
Adapting crystallographic programs to
multiple-CPU computers

George M. Sheldrick

ECACOMSIG Computing School 2016

http://shelx.uni-ac.gwdg.de/SHELX/

Parallel processing and SHELX
Most modern computers have multiple CPUs, so it seems appropriate to
use these to speed up crystallographic calculations.

I am very grateful to Kay Diederichs, who succeeded in making my crystal
structure refinement program SHELXL parallel and so appreciably faster.
Although I have made many changes to SHELXL since then, the method
of parallelization devised by Kay has been retained.

Diederichs, K. J. Appl. Cryst. (2000) 33, 1154-1161. Computing in
macromolecular crystallography using a parallel architecture.

Based on this experience, I was also able to adapt the programs SHELXD,
SHELXT and ANODE to parallel operation. A parallel version of SHELXE
is under development.

Threads and Hyperthreading
Parallel processing involves threads that operate simultaneously. In the
simplest case the number of threads is equal to the number of CPUs. One
may start more threads than there are CPUs but there is no advantage.

The hyperthreading feature of many Intel CPUs effectively doubles the
number of available CPUs, but unfortunately not for floating-point arithmetic.
In some memory-intensive cases it may be better not to use it.

Complications
The performance of an OpenMP program is influenced by a number of
factors, some of which can make benchmarking difficult.

1. Amdahl’s law. As the number of threads increases, the non-parallel part
of the code has a larger influence and sets an asymptotic limit to the
possible speedup.

2. Some processors automatically increase their clock rates when not
many threads are active. The limiting factor is the chip temperature.

3. Hyperthreading.

4. Memory access.

Amdahl’s law (1967)

Amdahl’s law describes the influence of the part of the program that does
not operate in parallel. This includes various overheads necessary to set up
the parallel processing as well as procedures that are slow but inherently
difficult to make parallel, e.g. matrix inversion in a full-matrix crystal
structure refinement.

If the scalar part takes s seconds and the parallel part p/n seconds, where
n is the number of CPUs, the speedup factor is:

F = (time on a single CPU computer) / (time on a computer with n CPUs)
= (s + p) / (s + p/n)

This approaches 1+(p/s) asymptotically as the number of CPUs increases.
Thus a program that is 75% parallel can never be as much as four times as
fast, however many CPUs are employed!

Cache memory

Each CPU has its own cache. Accessing data in cache is much faster than
RAM memory access. By dividing the data between the threads it may be
possible to avoid ‘cache misses’ and so achieve super-scalar performance
where the speedup relative to single-CPU operation is greater than the
number of CPUs. This violates Amdahl’s law.

The Intel Sandy bridge and Ivy bridge I7 processors (introduced in 2012)
have the following cache structure:

Level 1: 32KiB for data and 32 KiB for instructions per core

Level 2: 256 KiB per core

Level 3: 6 to 8 MiB

(1MiB = 220 = 1048576 bytes; 1MB = 1000000 bytes)

Crystallographic examples
The programs SHELXD and SHELXL will be used to illustrate different
approaches to achieving good parallel performance.

SHELXD makes many attempts to solve the phase problem starting each
from random phases or atom positions, usually filtered for consistency with
the Patterson function. This requires a critical section at the beginning of
each attempt so that each starts from different phases. After a given
number of cycles of iterative phase refinement, the program checks
whether the solution is the best so far. If it is, a critical section is used to
save the phases.

SHELXL divides the reflection data into blocks that are processed in
parallel. Each block is designed to fit into cache. Special action is needed
to combine the matrices generated by the different threads.

OpenMP – very simplified introduction
OpenMP provides many useful facilities to generate parallel code, but here
we will stick to essentials.

The first question is usually to find out how many CPUs are available. In
FORTRAN this is performed as follows:

C$ INTEGER omp_get_max_threads

N=1
C$ N=omp_get_max_threads()

Note that if the OpenMP compiler flag is not set, the lines beginning with
C$ are treated as comments and so this sets the number of threads to 1.

The value returned can be changed by setting the environment variable
OMP_NUM_THREADS The default includes hyperthreads.

OpenMP – very simplified introduction
Often the parallel part takes the form of a subroutine (called PSUB here).
We need to specify which data are SHARED and which are PRIVATE to a
thread. SHARED date may be used by all copies of the subroutine but may
only be changed when that subroutine has exclusive access (see critical
later). Variables defined locally in a subroutine are PRIVATE.

C$ omp parallel do default (SHARED)
DO 1 I=1,N
CALL PSUB(I,A,B,C)

1 CONTINUE
C$ omp end parallel do

In this case PSUB probably uses a critical section to save the best results
in the shared arrays.

OpenMP – very simplified introduction

C$ omp parallel do default (SHARED)
DO 1 I=1,N
CALL PSUB(I,A,B,C)

1 CONTINUE
C$ omp end parallel do

This construction has one serious disadvantage: it starts all N threads at the
same time. If subroutine PSUB uses a lot of (private) memory for arrays,
this could lead to cache misses. It is better to restrict N to the number of
real CPUs and repeat the loop as required.

The SHELX programs do this where necessary, e.g. for the P1 structure
solution stage in SHELXT, where N defaults to 4 but can be changed by
using the –t command line switch. Often 4 tries solve the structure and the
program can go onto the next stage (using the phases to determine the
space group, which involves a parallel loop over all possible space groups).

OpenMP – very simplified introduction
A critical section looks like this:

C$omp critical
some FORTRAN code

C$omp end critical

This forces all the other threads to wait if they encounter a critical section
that is already being executed by a thread. Critical sections involve
appreciable delays and overheads and should be used sparingly.

For example SHELXD can test whether it has found the best solution so
far without going critical, but if it is the best, then it uses a critical section
to save it. A nice side-effect is that the program accelerates as it is running,
because the best solution so far is found less often!

OpenMP – very simplified introduction
SHELXL uses an alternative, possibly FORTRAN-specific, way to pass
data between the scalar and parallel parts of the code. A number of
SHARED arrays are defined as two-dimensional in the scalar part and as
one-dimensional in the parallel subroutines, similar to the following:

REAL A(100,N)

C$ omp parallel do default (SHARED)
DO 1 I=1,N
CALL PSUB(A(1,I))

1 CONTINUE
C$ omp end parallel do

SUBROUTINE PSUB(A)
REAL A(100)

No critical section is required because each thread uses a different part of
array A.

Typical SHELXD (sub)structure solution

Speedup = (time for single thread) / (time for N threads)

Typical SHELXL CGLS refinement

Speedup = (time for single thread) / (time for N threads).

Conclusions
The actual speedup achieved is very problem dependent. Both algorithms
presented here perform reasonably well, but the hyperthreading adds
little.

In particular full-matrix crystal structure refinement (L.S.) tends to give
smaller speedups (of the order of two to six) than conjugate gradient
(CGLS) refinement. This is because of the appreciable scalar part (matrix
inversion) and the high memory requirements that result in frequent cache
misses. Every element of the large (triangular) least-squares matrix needs
to be added to for each reflection.

Acknowledgements
SHELX is available free for academic use and may be obtained via the
SHELX homepage that has moved to shelx.uni-goettingen.de

I am particularly grateful to Kay Diederichs for introducing me to parallel
programming and for his parallel version of SHELXL.

