
Some useful crystallographic algorithms

George M. Sheldrick

http://shelx.uni-ac.gwdg.de/SHELX/

ECM29 Computing School

21st August 2015

What is an algorithm ?
An algorithm is a way of calculating something that even the person who
invented it cannot understand! Usually algorithms involve some clever
mathematics to do something faster – sometimes by orders of magnitude –
or ‘better’ than the obvious way of doing it.

Sort algorithms
Sorting algorithms are a highlight of many informatics courses because the
difference in speed can be enormous. An obvious method such as scanning
A(1..N) to find the largest element, then swapping it with A(1), then scanning
A(2..N) and swapping the largest element with A(2), then scanning A(3..N)
etc. takes a time of order N2 (which for large N can be all week). The best
general algorithms are of order NlogN but are relatively complicated (best
to call a library routine).

Sometimes – as with sorting reflection lists – we can take advantage of the
special features of the particular problem to reduce the order to almost N.
For 10000 reflections, N2 is 100000000, NlogN is 50000 but N is only 10000
(but the constant factor multiplying the order may differ)!

A typical sort algorithm
The following FORTRAN routine (called comb-sort) is a good general
purpose algorithm for sorting a few hundred items (e.g. Fourier map peaks).
Although not quite NlogN it is fast because it has a low overhead. The array

K=N
1 K=INT(REAL(K)/1.2796)

IF(K.LT.1)K=1
IF(K.EQ.9.OR.K.EQ.10)K=11
M=0
DO 2 I=1,N-K
J=I+K
IF(A(J).GT.A(I))THEN
Q=A(J)
A(J)=A(I)
A(I)=Q
M=1
ENDIF

2 CONTINUE
IF(M+K.GT.1)GOTO 1

A(1..N) (containing e.g. peak
heights) is sorted into descending
order. In practice the IF..ENDIF
loop would also need to swap the
atom coordinates x, y and z as
well as the peak heights.

Sorting reflection lists (order N)
First h,k,l are transformed to a standard equivalent (e.g. maximum l, if l
equal then maximum k, if both k and l equal then maximum h). Then the
maximum and minimum values of each index are found.

To sort on h, scan list, count how often each h is present, storing the counts
in an integer array N(hmin..hmax). This is then converted so that it holds
pointers ph to the final list: The list is scanned again, putting each reflection
into the final location pointed to by ph and then incrementing ph.

The list is sorted first on h, then on k, and finally on l. In the final sorted list,
equivalents finish next to each other and so can easily be averaged.

p3 p4 p5 p6

• • • all h=3 all h=4 all h=5 all h=6 • • •
FINAL LIST

Calculation of interatomic distances

There are two general approaches:

(A) Convert to Cartesian coordinates, then use Pythagoras:
x, y, z (crystal fractional coordinates) → X, Y, Z (orthogonal)
then d 2 = (X1–X2)2 + (Y1–Y2)2 + (Z1–Z2)2

(B) Use crystal coordinates directly:
d 2 = a2 (x1–x2)2 + b2 (y1–y2)2 + c2 (z1–z2)2 + 2bc cosα (y1–y2) (z1–z2)

+ 2ac cosβ (x1–x2) (z1–z2) + 2ab cosγ (x1–x2) (y1–y2)

Method (A) is simpler and usually faster, but with method (B) it is much
easier to handle symmetry equivalent atoms (see tutorial).

Orthogonal coordinates
A large variety of transformations are in use. For example, to convert
fractional coordinates x, y, z to default PDB orthogonal coordinates X, Y, Z
the following transformation is used:

X = ax + (b cosγ) y + (c cosβ) z
Y = 0 + (b sinγ) y + (–c sinβ cosα*) z
Z = 0 + 0 + (c sinβ sinα*) z

where cosα* = (cosβ cosγ – cosα) / (sinβ sinγ)
and sinα* = √(1 – cos2α*)

Of course the coefficients are calculated once and stored; for the X, Y, Z
→ x, y, z transformation the inverse matrix is used (given on the
SCALE1, SCALE2 and SCALE3 PDB cards), or the same coefficients as
above can be used (in the right order!):

z = Z / (c sinβ sinα*)
y = (Y – (–c sinβ cosα*) z) / (b sinγ)
x = (X – (b cosγ) y – (c cosβ) z) / a

Finding nearest neighbors
At first sight we need to test against all M symmetry equivalents and all 26
surrounding unit-cells, so to find all short distances (e.g. bonds) involving all
N atoms in a structure requires calculating 13MN(N–1) interatomic
distances, which could be slow! The following algorithm is faster:

First prepare a separate list of all the atoms x’, y’, z’ in one unit cell, taking
symmetry and lattice type into account, adding 99.5 to all x’, y’ and z’
values (!)

Then find all distances with d 2 < dmin
2 using:

∆x = (x’−x) mod 1 − 0.5
∆y = (y’−y) mod 1 − 0.5
∆z = (z’−z) mod 1 − 0.5

and: d 2 = a2∆x2 + b2∆y2 + … + 2ab cosγ ∆x ∆y

The coordinates of the neighboring atoms x’, y’ and z’ may be found using:
x” = x + ∆x, y” = y + ∆y, z” = z + ∆z

Note: in Fortran, T–AINT(T) can be
appreciably faster than AMOD(T,1.0)

Speeding it up
For large structures this algorithm can be speeded up by another couple of
orders of magnitude!

First divide the structure into groups of say 10 atoms that are expected to
be close to one another (in macromolecules one can conveniently group
atoms with the same residue number). For each group the mid-point x, y, z
and the maximum distance R of any atom from the midpoint are found.

The distance search is first applied to the mid-points. Only for the rare
cases when a pair of mid-points i and j are within Ri + Rj + dmin of one
another do the individual atoms in the two groups need to be tested against
one another.

Special positions
Special positions may be found in a similar way to the search for short
distances, but the inner loop is over the equivalents of the current atom,
not the complete unit-cell, so it is much faster.

If d 2 < (say) 0.1 Å2 one could consider the atom to be on a special
position (but see the SPEC instruction in SHELXL!). The occupancy for
SHELXL is given by the reciprocal of the number of atoms that coalesce to
a single atom.

To idealize the coordinates so that the atom lies exactly on the special
position, simply average all x’ values, all y’ values and all z’ values,
including the original x, y and z. It is advisable to iterate this calculation
about three times because for peaks some distance from the special
position the above test may fail for some of the equivalent positions in the
first pass.

The shortest distance matrix
The shortest distance matrix (SDM) for N unique atoms is a NxN matrix in
which each location stores the shortest distance dij between the atoms I
and j taking symmetry into account. To find these distances it is sufficient to
consider one position for atom i and all equivalents for atom j. Since the
matrix is symmetrical it can also be displayed in triangular form. The
diagonal elements are usually calculated as the shortest non-zero distance
between equivalents of the same atom.

Despite the drastic simplification involved – all other distances are ignored
– this matrix is rather useful!

At the same time as generating all possible unique vectors between two
atoms, one can also make a list of the Patterson values at the vectors. This
list is then sorted and the values for (say) the weakest 30% summed (a
Patterson minimum function, PMF). The combination of PMF values and
shortest distances is very useful for Patterson interpretation, and may be
found in the .lst file from SHELXD when the PATS instruction is invoked.

Peak self cross-vectors

99.9 37.9
19.1

93.9 54.9 8.9
19.1 18.6

93.6 26.3 22.7 19.4
19.1 15.0 17.1

91.2 48.7 21.9 21.4 20.6
18.4 36.0 20.0 20.4

85.2 31.0 23.9 20.8 32.5 19.5
13.5 21.9 21.2 19.3 15.3

83.3 38.0 26.2 17.3 25.9 30.0 23.5
28.2 24.3 19.1 17.8 19.3 20.8

76.6 37.5 18.5 21.7 23.6 9.0 22.7 34.6
14.6 15.7 14.5 12.6 18.1 14.9 20.9

69.1 29.8 34.7 30.0 23.2 17.2 26.0 28.7 26.1
14.0 19.8 20.9 19.8 9.6 16.7 18.2 19.4

--
22.3 54.6 10.3 4.2 18.4 17.6 17.7 17.4 18.8 26.3

0.0 2.7 0.0 2.8 11.5 0.0 0.0 2.1 0.0

Identifying NCS for JIA SeMet MAD

A1

A2

A3

A4

B1

B2

B3

B4

A1

A3

A2

A4

B1

B3

B2

B4

Thomas R. Schneider

Bringing the atoms together in SHELXT
The following algorithm used in SHELXT does not require that elements
and hence covalent radii are correctly assigned to the atoms!

1. Generate the SDM (Shortest Distance Matrix – shortest distances
between unique atoms, taking symmetry into account).

2. Set a flag to −1 for each unique atom, then change it to +1 for one atom
- it does not matter which.

3. Search the SDM for the shortest distance for which the product of the
two flags is −1; if none, exit.

4. Symmetry transform the atom with flag −1 for this distance so that it is
as close as possible to the atom with flag +1, then change its flag to +1.

5. GOTO 3

This diabolically simple algorithm not only builds the molecules as we would
intuitively expect them whatever the space group, but also clusters them in
a chemically sensible way, making the structure instantly recognizable.

Application to macromolecules
The shortest distance matrix is probably not the optimal method to cluster
macromolecules. A better approach might be to prepare a similar matrix for
molecules instead of atoms, and to store in it the largest contact areas
between two molecules instead of the shortest distances, but handling
symmetry in the same way.

Tutorial
The file insulin.pdb is a highly mutilated (but legal) PDB file from a high
resolution insulin structure. As would be the case for the initial atom sites
from a structure solution, some atoms need to be symmetry transformed to
show the structure properly. You should write a program (any programming
or scripting language may be used) that reads this file in order to:

1. Generate crystal coordinates for the atoms by multiplying the orthogonal
coordinates in the file by SCALE1 etc. (see next page).

2. Set up a triangular SDM (matrix of shortest distances between unique
atoms) taking the space group symmetry and lattice centering into account.
The distances along the diagonal should be the shortest distances between
an atom and all its symmetry equivalents.

3. Inspect this matrix to deduce which atoms lie on special positions and
which sulfurs make disulfide bonds.

The structure contains two monomers in the asymmetric unit, each with 3
disulfides and one Zn. Suggest an algorithm to divide the structure into
these monomers (more difficult).

Further information for the tutorial
Space group R3 on hexagonal axes requires the following symmetry
operations and lattice translations:

x, y, z
-y, x-y, z
y-x, -x, z

0, 0, 0
⅔, ⅓, ⅓
⅓, ⅔, ⅔

The SCALEn cards (SCALE1 s11 s12 s13 t1 etc) are used to convert the
orthogonal coordinates (xo) to crystal coordinates x as follows:

x = s 11*xo + s12*yo +s13*zo + t1

y = s 21*xo + s22*yo +s23*zo + t2

z = s31*xo + s32*yo +s33*zo + t3

Note: the PDB file contains the chain and residue numbers for checking the
results against PDB entry 1MSO, your program should ignore t hese!

