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The symmetry operators
All symmetry-dependent information in real or reciprocal space can be 
derived from the symmetry operators!  E.g. Space group P31: 

m = 1: x, y, z;   m=2: –y, x–y, z+⅓;   m=3: –x+y, –x, z+⅔

These operators may also be expressed as 3x3 matrices R plus vectors t:

xm R11 R12 R13 x t1
ym =       R21 R22 R23 y +        t2
zm R31 R32 R33 z t3

Or:     xm = Rmx + tm,     which in the case of operator m=3 is:

xm –1     1     0           x 0

ym =       –1     0     0           y +        0

zm 0     0     1           z ⅔



Symmetry operators for P41212
For the examples in this talk we will use the space groups P31 and P41212;
for the latter the general positions are:

m=1:  x, y, z m=2:  –x, –y, z+½

m=3:  ½–y, ½+x, z+¼         m=4:  –y, –x, ½–z

m=5:  ½+y, ½–x, z+¾         m=6:  ½–x, ½+y, ¼–z

m=7:  ½+x, ½–y, ¾–z m=8:  y, x, –z

i.e. for m=5:
0   1   0                          ½

R =      –1  0   0                 t =     ½

0   0   1                          ¾

To obtain the general positions of the enantiomorphous space group
P43212, just exchange ¼ and ¾ !

Properties of R and t
The determinant of the matrix R must be +1 or –1. If it is –1 it produces an
inverted image, so the space group in not chiral (but may still be non-
centrosymmetric).

When one row of R is never negative for any operator [e.g. the third row (R31
R32 R33) in P31] the space group is polar.

If all elements of t are zero for all operators (not including lattice centering)
the space group is symmorphic (and has no systematic absences apart from
lattice absences).

If t includes elements that are not multiples of ½ and the lattice is primitive
the space group is one member of an enantiomorphic pair; if either all
elements of t are multiples of ½ or the lattice is centered the space group
does not belong to an enantiomorphic pair (!)

Symmetry in reciprocal space
For the symmetry operator m:  xm = Rmx + tm

The calculated structure factor Fc is given by the complex number

Fc = ( A + iB ) where:
Ahkl = ∑atoms ∑symm fj cos[2π(hxm+kym+ℓzm)]
Bhkl = ∑atoms ∑symm fj sin[2π(hxm+kym+ℓzm)]

(the exponential term for atomic displacements has been included in the
scattering factor fj here for simplicity). But

hxm+kym+ℓzm = h (Rmx+tm) = hmx + kmy + ℓmz + ht1 + kt2 + ℓt3

where:  hm = R11h + R21k + R31ℓ

km = R12h + R22k + R32ℓ

ℓm = R13h + R23k + R33ℓ

So to find the equivalent indices (hm,km,ℓm) we multiply (h,k,ℓ) by the
transpose of the matrix R.

The phases of equivalent reflections
The phase φm of the equivalent reflection hm is derived from the phase φ of
the (prime) reflection h by:

φm = φ – 2πhtm = φ – 2π ( ht1 + kt2 + ℓt3)

For example in P31: h2 = 0h +1k + 0ℓ = k
k2 = –1h –1k + 0ℓ = –h–k
ℓ2 = 0h + 0k + 1ℓ = ℓ

So h2 is k, –h–k, ℓ with phase:

φ2 = φ – 2πht 2 = φ – 2π ( 0h + 0k + ⅓ℓ ) = φ – (⅔)πℓ

These are the true equivalent reflections; they have the same intensities
and exactly the above phase shifts whether anomalous scatterers (that
would cause Friedel’s law to break down) are present or not.



Friedel’s law
Friedels law states that |F–m| = |Fm| and φ–m = –φm where φ–m is the phase
of (–hm,–km,–ℓm). Friedel’s law is strictly valid only when f” is equal (or zero)
for all atoms in the structure, but it is almost always a good approximation.
In space group P31:

|Fh,k,ℓ| = |Fk,–h–k,ℓ| = |F–h–k,h,ℓ| (exact equivalents) and

|F–h,–k,–ℓ| = |F–k,h+k,–ℓ| = |Fh+k,–h,–ℓ| (exact equivalents)

but these two groups are only approximately equal because they are
related by Friedel’s law. For non-centrosymmetric space groups (chiral or
not) there are always two groups of exact equivalents; if Friedel’s law holds,
the |F| values of the two groups are also the same.

Equivalents in P41212
For P41212 the two groups of equivalents are:

h,k,ℓ = –h,–k,ℓ = k,–h,ℓ = –k,–h,–ℓ = –k,h,ℓ = –h,k,–ℓ = h,–k,–ℓ = k,h,–ℓ 

–h,–k,–ℓ = h,k,–ℓ = –k,h,–ℓ = k,h,ℓ = k,–h,–ℓ = h,–k,ℓ = –h,k,ℓ = –k,–h,ℓ 

The space group P4mm has the same Laue group as P41212 but different
Friedel-related groups:

h,k,ℓ = –h,–k,ℓ = k,–h,ℓ = –k,–h,ℓ = –k,h,ℓ = –h,k,ℓ = h,–k,ℓ = k,h,ℓ 

–h,–k,–ℓ = h,k,–ℓ = –k,h,–ℓ = k,h,–ℓ = k,–h,–ℓ = h,–k,–ℓ = –h,k,–ℓ = –k,–h,–ℓ 

To derive these groups of equivalents correctly, it is necessary to know the
point group (or space group). The Laue group contains an inversion center
and so is not sufficient. It should be noted that for chiral compounds (i.e. for
macromolecules) there is only one possible point group for each Laue group
(the one that has rotation axes but no planes, inversion centers or inverse
tetrads).

Systematic absences
A reflection is systematically absent when hm = h but φm is not equal to φ
(+2nπ where n is an integer). In P31:

φk,–h–k,ℓ = φh,k,ℓ – 2πℓ/3 (+2nπ)

so when h = k = 0:
φ0,0,ℓ = φ0,0,ℓ – 2πℓ/3 (+2nπ)

which can only be true when ℓ = 3n, i.e. reflections 0,0,ℓ with ℓ not equal to
3n are systematically absent. Note that the reflection is absent if this
applies for any operator m. E.g. in P41212:

m=2:      φ–h,–k,ℓ = φh,k,l – πℓ (+2nπ)

which implies 0,0,ℓ absent for ℓ not equal to 2n, but:

m=3:      φk,–h,ℓ = φh,k,ℓ – πh – πk – ½πℓ (+2nπ)

which requires 0,0,ℓ absent for ℓ not 4n, so 0,0,2 is also absent.

Symmetry-restricted phases
If h–m = h  then:

φ–m = – ( φ – 2πhtm) = φ (+2nπ)

which gives the equation:

2φ = 2πhtm + 2nπ (n integer)

or φ = π ( ht1 + kt2 + ℓt3 + n )

So there can only be two possible values for φ (corresponding to odd and
even n) and they must differ by π. Such reflections belong to a
centrosymmetric projection. In P31, for no values of m and h,k,ℓ (except
0,0,0) is h–m = h, so there are no centrosymmetric projections. This is
clearly also true in real space from inspection of the IT diagram.



Centric reflections in P41212
P41212 has several classes of reflections with restricted phases, e.g.:

m=2:     h–m = –(–h,–k,ℓ)

which is equal to  h,k,ℓ when ℓ=0, which gives:

φh,k,0 = π ( 0h + 0k + (½)0 ) + nπ = nπ

so the h,k,0 reflections have phases restricted to 0 or π. Similarly, m=6
gives h–m = –(–h, k, –ℓ) which is equal to h,k,ℓ if k = 0. Then:

φh,0,ℓ = π ( ½h + ½(0) + ¼ℓ ) + nπ = π ( ½h +¼ℓ ) + nπ

So for example the reflection 1,0,1 has two possible phases of 3π/4 or 7π/4.

In the case m=4, h–m = –(–k,–h,–ℓ)  which is equal to  h,k,ℓ when h = k.  
Thus it can be shown that reflections  h,h,ℓ  are restricted to π/2 or 3π/2.

Phases and translation
If the whole structure is shifted by ∆x we can write:  xj’ = xj + ∆x
Thus   Fh’ = ∑j fj exp(2πi hx’j) = ∑j fj exp(2πi (h(xj+∆x))

= [ ∑j fj exp(2πi hxj)] exp(2πi h∆x)
= Fh exp(2πi h∆x)

i.e. φ’ = φ + 2πh∆x

Only those origin shifts are allowed that do not alter the symmetry of the
space group. Phases that do not change on any allowed origin shift are
called seminvariant phases.

If there are two phase sets (e.g. from direct methods) with phase differences
∆φh, a Fourier synthesis:

Q∆x = ∑h |F|2 exp(i∆φh) exp(–2πi h∆x)

Should give a maximum at ∆x equal to the translation between the two
structures.

Using phases to find the correct origin and space group
PLATON can find the space group and place its origin correctly starting from
atom positions in P1. The disadvantage of this approach is that tolerances
are required to decide whether atom positions are the same within
experimental error in the higher space group.

Giacovazzo [J. Appl. Cryst 33 (2000) 307] and Palatinus [J. Appl. Cryst. 41
(2008) 975] suggested ways of finding the space group and the required
origin shift using only the phases. The two approaches are similar but
Giacovazzo finds the full space group directly (but at his own admission,
slowly) whereas Palatinus searches for individual symmetry elements and
then uses them to construct the space group.

An advantage of this approach is that it is possible to define a single figure
of merit to decide which possible space group is more likely.

The phases of equivalent reflections
The phase φm of the equivalent reflection hm is derived from the phase φ of
the (prime) reflection h by:

φm = φ – 2πhtm = φ – 2π ( ht1 + kt2 + ℓt3)

For example in P31: h2 = 0h +1k + 0ℓ = k
(for symmetry k2 = –1h –1k + 0ℓ = –h–k
operator #2) ℓ2 = 0h + 0k + 1ℓ = ℓ

So h2 is k, –h–k, ℓ with phase:

φ2 = φ – 2πht 2 = φ – 2π ( 0h + 0k + ⅓ℓ ) = φ – (⅔)πℓ

This relation is only valid if the space group is correct and the structure has
been shifted so that the origin is correctly placed.



Phases and translation
If the whole structure is shifted by ∆x we can write:  x j’ = x j + ∆x
Thus Fh’ = ∑j fj exp(2πi hx’ j) = ∑j fj exp(2πi (h(x j+∆x))

= [ ∑j fj exp(2πi hx j)] exp(2πi h∆x)
= Fh exp(2πi h∆x)

i.e. φ ’ = φ + 2πh∆x

This provides us with a way to find the origin shift ∆x using the phases, by
fitting the phase differences between equivalent reflections h’ and h to
2ππππh∆x. This calculation has to be performed modulo 2π!

The αααα figure of merit
In my hands both the Giacovazzo and Palatinus figures of merit performed
well. The related α value used in SHELXT has a direct physical meaning
(the normalized mean square phase error). For a prime reflection h and a
symmetry equivalent hm we define:

q = { φm − φ + 2π[htm + ∆∆∆∆x(hm−h)] } modulo 2π

For the correct origin shift ∆∆∆∆x and the correct space group q should be close
to zero if the phases of the symmetry equivalents are consistent. An F2-
weighted sum of q2 over all pairs of equivalents for all reflections,
normalized so that it would have a value of 1.0 for random phases, is then
the figure of merit α.

Finding the origin in a centrosymmetric space group
Only when the inversion center of a centrosymmetric structure is at the
origin will the phases be 0 or π, otherwise they have general values. To find
the origin shift needed to bring an inversion center to the origin, we can
double the phases (so that they should all be zero if the origin is correct)
and then perform a Fourier transformation:

PX =  ∑h |Fh|2 exp(–2πi•2φh) exp(–2πI hX)

The electron density should then be shifted by X/2 to bring it to the true
origin, where X is the position of the maximum of this origin shifted
Patterson function. In SHELXT the α figure of merit for this P1 to P1
conversion is referred to as α0. It should be less than about 0.25 for a
centrosymmetric space group.

It is still necessary to take into account that not all inversion centers are
equivalent in all space groups. However it is still much faster to test all
possible non-equivalent inversion centers than to do a full 3D grid search to
find the best value of α.

A 3D grid search for α would be slow because it is not suitable for a FFT, so
it is divided into 2D and 1D searches. All non-centrosymmetric space groups
in the given Laue group are tested as follows, taking axis transformations to
obtain conventional settings into account where necessary.

In all cases (including centrosymmetric) the ∆∆∆∆x value obtained by
interpolation is then refined further to minimize α.

Calculating αααα in non-centrosymmetric space groups

1. For P1 no search is required, α is undefined (set to zero).

2. For the space groups Pm, Pc, Pn, Cm and Cc a 1D line search is
performed.

3. For all other polar space groups, a 2D grid search is performed.

4. For all other space groups, a 2D grid search is followed by a 1D line
search.


