
Parallel Processing

Kay Diederichs

2

Parallelization

Doing 2 or more computations at the same time, making use of
multiple CPUs or computers, leading to reduced wallclock time
(speedup).

Examples in crystallography:

 Processing several datasets
 Spot finding in raw data frames
 Estimating signal and background for all pixels of a detector frame
 Varying one or more parameters of a long calculation (“grid search” e.g.
Molecular Replacement, or weight optimization in Phenix.refine)
 Scaling data sets, or electron density or structure factor calculation, using
many reflections/atoms, performing essentially the same calculation for
each reflection/atom

3

Overview

slide #

Hierarchy of parallelization opportunities 4

General facts and guidelines 5-7

Hardware 9

OpenMP: basic language elements 10-24

Examples for use of OpenMP in Crystallography 25-29

Outlook and References 30-32

4

„graininess“ ordering requirements
(„synchronisation“)

Hardware Software Examples

very coarse none: calculations are ~
independent

computers +
access to storage

e.g. xterm
sessions

processing several
experimental data
sets at the same time

coarse weak: a few
synchronization points,
e.g. 1/sec

+ LAN ssh + public keys;
GNU parallel

XDS with
MAXIMUM_NUMBER
_OF_JOBS >1

medium frequent synchronization,
e.g. 100/sec

+ dedicated fast
network protocol

MPI, CoArray
Fortran

climate models; QM;
hydrodynamics

fine e.g. 10.000/sec RAM=shared
memory

threading e.g.
OpenMP

XDS, Phaser,
SHELXL+D, ...

very fine > 1.000.000/sec CPU + 1/2/3-level
caches

Vectorization
(SIMD)

high-level
programming
language +/-
directives

A hierarchy of parallelization opportunities

G
P
U

OpenMP

5

Why parallelize?
 because human time is not well spent when waiting
 we can try more parameters to get the best result
 sometimes new ideas/new science needs heavy computing

Should I parallelize?
 only if the time saved (by you and other users of your

program) is significantly longer than the time spent for
parallelization (algorithm adapation; implementation; tests)

How to parallelize?
 coarse grained: often „embarassingly parallel“; easy
 fine grained: OpenMP basics are rather intuitive
 very fine grained: mostly a matter of compiler options

6

Lessons from past experience

1) parallelization is a bad substitute for a better
algorithm

2) only when you are sure that the algorithm is the best
and the implementation is clean should parallelization
be considered

3) one often has to adapt the algorithm to parallelization

4) the coarser the better – the finer, the more overhead

5) parallelization adds another level of complexity. This
makes debugging more difficult

7

Speedup is limited: Amdahl's Law

If P = time fraction of parallel part, and
1-P = time fraction of serial (sequential) part
N = number of processors

then parallel speedup is (Example: P=0.8 N=4: 2.5)
1

(1−P)+
P
N

8

OpenMP Overview

• Hardware aspects

• the OpenMP API (most important facts only!)

• example: parallelization of SHELXL, CNS, XDS

• Speedup findings

9

Hardware

• since ~1998: affordable 2-socket (Intel/AMD)

• 2002: HyperThreading (Intel)

• 2005: 2-core (AMD, Intel)

• 2007: 4-core (Intel)

• 2008: 4-core (AMD)

• 2009: 6-core/ 8-core (Intel, AMD), + HT

• 2010: 6+6-core (Intel), 12-core (AMD)

2010+ : „cheap“ 2*(6+6) and 4*12 (Intel, AMD)

Speed maxed out at ~ 4 GHz

GPU: potentially thousands of „CPUs“ on one board

10

OpenMP: Open MultiProcessing

• A standard developed under the review of many major
software and hardware developers, government, and
academia

• facilitates simple and incremental development of
programs to take advantage of SMP architectures

• SMP: Symmetric multi-processing, n processors/cores
(usually n=2, 4, 8, 16, 32 ...) in a single machine..

• Shared memory - memory is local to all processors in a
machine: multi-processor / multi-core but also NUMA
(large Intel-Xeon or AMD-Opteron)

• not for distributed memory (but Intel Cluster OpenMP
exists, and for Fortran2008 CoArrays is standardized)

• May be combined with MPI

11

OpenMP Architecture Review Board
Compaq / Digital
Hewlett-Packard Company
Intel Corporation
International Business Machines (IBM)
Kuck & Associates, Inc. (KAI)
Silicon Graphics, Inc.
Sun Microsystems, Inc.
U.S. Department of Energy ASC program

Endorsing software vendors
Absoft Corporation
Edinburgh Portable Compilers
GENIAS Software GmbH
Myrias Computer Technologies, Inc.
The Portland Group, Inc. (PGI)

 Documentation Release History
Oct 1997: Fortran version 1.0 (63 pages)
Oct 1998: C/C++ version 1.0 (85 pages)
Nov 2000: Fortran version 2.0
Mar 2002: C/C++ version 2.0
May 2008: C/C++ and Fortran version 3.0
Jul 2013: C/C++ and Fortran version 4.0 (320 pages)

http://www.openmp.org

12

OpenMP: What is it?

• OpenMP language support:

Fortran (Fortran77+), C, C++

• OpenMP API is comprised of:

• Compiler directives
• Library routines
• Environment variables

• Compilers supporting OpenMP:

GCC (free on all OS), Intel (Linux: free for
developers), Portland Group (PGI; Linux: free for
academics), Oracle Solaris studio (Linux: free),
Microsoft, IBM, HP, Cray …

• compatibility is usually very good

13

Fork-Join Parallelism

threads (processes) form a “Master-Worker Team”

The threads communicate through shared variables
(shared memory)

• Overhead! The savings in wallclock time need to
amortize thread fork and communication costs

• Again, parallelization at outer loop (coarsest) level
is the most efficient; finest grain is > 1000 operations

loop or task loop or task loop or task

14

The most fundamental OpenMP directive:

PARALLEL DO

 integer i, n
 real x(100000)
 ...
 n = 100000
!$omp parallel do shared(x,n) private(i) ! directive with clauses

do i = 1, 100000
 x(i) = x(i) + exp(i/n)
 call doalotofwork(x(i))

end do
 ...

15

… but parallelization is not always easy/possible:

1 // Do NOT do this. It will fail due to data dependencies.

2 // Each loop iteration writes a value that a different
iteration reads.

3 #pragma omp parallel for

4 for (i=2; i < 10; i++)

5 {

6 factorial[i] = i * factorial[i-1];

7 }

There are several types of such „data dependencies“: see e.g.
http://www.ncsu.edu/hpc/Courses/8shared.html#classify
If not removed: „data races“=wrong results, or deadlocks

http://www.ncsu.edu/hpc/Courses/8shared.html#classify

16

Data scope clauses:

Shared memory programming: OpenMP defaults to shared
data (which can be accessed by all threads)

•shared(var,...) : explicitly share variables across
all threads.

•private(var,...): uninitialized, thread local instance
of the variable, cannot be accessed by other threads

•firstprivate(var,...) : initialize local instance of
the variable from master thread

• Functions called within a parallel region have their own
private stack space

shared versus private is the biggest conceptual
stumbling block for beginners

17

Scheduling clauses:

•schedule(static [,chunk])
Threads get a chunk of data to iterate over (default)

•schedule(dynamic [,chunk])
Threads grab chunk iterations off work queue until all work
is exhausted

•schedule(guided [,chunk])
Threads grab a large chunk size first, and decrease the
size to the specified size as the computation progresses

•schedule(runtime)
Threads use the schedule defined at runtime by the
OMP_SCHEDULE environment variable

18

Compatibility with non-OpenMP compilers

Parallelization is transparent and incremental

Conditional compilation using special comment line:
!$ integer omp_get_num_threads
 n=1

!$ n=omp_get_num_threads()

but also
!$ if (n.GT.1000) then
!$ m = 10
!$ else
 m = 100
!$ endif

This allows to use the same source code for all (OpenMP
and non-OpenMP) compilers, but activates special code if
running on a multiprocessor machine.

19

Reduction

It is often necessary that all threads accumulate (or perform some other
operation on) a single variable, and return a single value at the end of
the computation

OpenMP provides a reduction clause:

reduction(op: list)

op can be + - * / min() max() , and certain binary bitwise
operators (OpenMP 4.0 allows user-defined reductions). Example:

sumx=0.

!$omp parallel do shared(x,n) private(i)
reduction(+:sumx)

 do i=1,n
 sumx = sumx + x(i)
 end do

20

Synchronization Constructs

If two or more threads write to the same shared variables
then these updates must be protected from “race
conditions”. OpenMP provides:

!$omp critical
Creates critical section i.e. serializes: only one thread can enter
at a time (ends at !$omp end critical). High latency.

!$omp atomic
Special version of critical, for atomic ops (e.g. updating a single
memory location). Very low latency.

!$omp barrier
Synchronization point for all threads in parallel region

!$omp ordered
Forces sequential execution of the following block (e.g. for I/O)

21

Environment Variables

OMP_NUM_THREADS: sets maximum number of threads
to use

OMP_SCHEDULE: scheduling algorithm for parallel
regions

OMP_DYNAMIC (TRUE, FALSE): dynamic adjustment of
number of threads for parallel regions

OMP_NESTED (TRUE, FALSE): enables or disables
nested parallelism

22

OpenMP Library Routines: prefixed with omp_

control and query the parallel execution environment e.g.

subroutine OMP_SET_NUM_THREADS()
function OMP_GET_MAX_THREADS()
function OMP_GET_THREAD_NUM()
function OMP_IN_PARALLEL()

Low-level locking routines

subroutine OMP_INIT_LOCK()
subroutine OMP_DESTROY_LOCK()
subroutine OMP_SET_LOCK()
subroutine OMP_UNSET_LOCK()
function OMP_TEST_LOCK()

23

An OpenMP Example:

part of crystallographic program (Fortran77)

...
!$omp parallel do shared(fc,nref,natom,xyz,hkl,fcabs,fo,
!$omp& fosum,fcsum,rfnum) private(i,j,fcmplx)
!$omp& reduction(+:fosum,fcsum)
 do i = 1,nref
 fc = (0.,0.)
 do j = 1,natom
 fc = fc+exp(2.*pi*(0.,1.)*(xyz(1,j)*hkl(1,i)+
 & xyz(2,j)*hkl(2,i)+xyz(3,j)*hkl(3,i)))
 continue
 fosum = fosum+fo(i)
 fcabs(i) = abs(fc)
 fcsum = fcsum+fcabs(i)
 continue
!$omp end parallel do
...

24

Tools for analyzing OpenMP code

Correctness: Thread Checker (Intel)

Detects thread-correctness issues including data-
races, dead-locks, and threads stalls.

Performance: Thread Profiler (Intel)

Analyzes threading performance and enables you to
visualize thread interactions. Simple alternative: gprof

Intel compilers and tools: Linux versions are free for
developers, and cheap for academics

Similar tools from Oracle (Sun), for their free
compilers.

25

Crystallographic programs using OpenMP

 BEAST molecular replacement (precursor of PHASER)

 ESSENS real-space molecular replacement

 CNS structure factors/derivatives

 SHELXL structure factors/derivatives

 XDS data reduction (Wolfgang Kabsch)

 SHARP heavy atom refinement (Globalphasing)

 SHELXDsubstructure analysis (George Sheldrick)

 phenix.refine refinement (Phenix; less well
supported due to interference w/ Python threads)

26

SHELXL parallelization with OpenMP

• profiling - find those loops which take longest wallclock time

• modify structure of the program a bit such that the most time-
consuming partscan be changed into PARALLEL DO loops

• test and verify correctness

• has been working quite well

• George Sheldrick has since rewritten SHELXL; kept OpenMP

27

Timings of SHELXL (not the current version)

• 4 parallel regions
• Dual-Xeon 2.8GHz (+/- Hyperthreading)

2nd CPU disabled in BIOS :
1 thread no HT 3h 3min (100%)
2 threads HT 2h 32min (83%)
 Hyperthreading gives 17% speedup

both CPUs enabled in BIOS:
2 threads no HT 1h 33min (51%)
4 threads HT 1h 17min (42%)

 a “logical” processor (HT) gives 17% speedup
 a “physical” processor (Dual-CPU) gives almost 2-fold (98%) speedup
 SHELXL has 2% serial code

Amdahl’s Law: speedup(n) =

[speedup(8) = 1/(0.98/8+0.02)=7.0 speedup(16)=12.3]

1
(0 . 98/n+0 .02)

28

CNS

• FFT: possible to parallelize, but little speedup
• Memory subsystem, "false sharing", max. aggregated

throughput of bus and other subtleties need to be
considered

• Generally: better to use FFTW (BLAS/LAPACK)

• Subgrid algorithm: A. T. Brünger (1989) A memory-
efficient fast Fourier transformation algorithm for
crystallographic refinement on supercomputers Acta
Cryst. (1989). A45, 42-50

• Speedup on Quad-core: more than 2 (Amdahl's Law!)
• another few % gains by HyperThreading

29

XDS

two levels of parallelization:
 shell-level (via ssh) dividing a dataset into

JOBS (up to 99); synchronization only at end.
 thread-level (OpenMP) dividing a batch of

frames (5° rotation) among CPUs (up to 32);
synchronization every 5°.

 very clean code
 quite good speedup

30

Perspectives of OpenMP

• GCC compilers support OpenMP 4.0 since v4.9 (June-2015)

• OpenMP 4.0 can offload computations to other devices (Xeon
Phi) but not (yet) to GPUs. The latter needs OpenACC.

• Some compilers have auto-parallelization (-parallel) of
simple DO loops with automatical specification of SHARED,
PRIVATE, FIRSTPRIVATE and REDUCTION clauses. In my
experience, this is good for finding places where code re-
arrangement and/or inserting directives should help. Most of the
existing code however cannot be auto-parallelized due to “data
dependencies”.

• integration with tools for checking correctness, and performance

• Cluster OpenMP (Intel; non-free) is able to use distributed
shared memory, i.e. to run OpenMP across several machines,
using a few proprietary extensions. But CoArray Fortran may be a
better (Fortran2008 and GCC v5-supported) alternative.

31

Summary

• OpenMP: a simple way to make programs run faster on
multi-core machines; speedups of >10 are reachable on
32-CPU hardware

• OpenACC: higher speedups are in reach, using GPUs

• OpenMP appears to move towards OpenACC: the future
holds promise

32

References
 OpenMP website: http://www.openmp.org/
 Excellent introduction to OpenMP (version 3.1):

https://computing.llnl.gov/tutorials/openMP/

 Youtube: http://tinyurl.com/OpenMP-Tutorial (2013)

 Diederichs, K. (2000): Computing in macromolecular crystallography
using a parallel architecture J. Appl. Cryst. 33, 1154-1161

 R. Gerber: https://software.intel.com/en-us/articles/getting-started-
with-openmp and references therein (2012)

 B. Chapman, G. Jost, R. van der Pas: Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2008.

 M Süß and C. Leopold: Common Mistakes in OpenMP and How To
Avoid Them.
http://wwwi10.lrr.in.tum.de/~gerndt/home/Teaching/EfficientHPCProgramming/CommonMistake
sInOpenMPAndHowToAvoidThem.pdf

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

