
Airlie McCoy
University of Cambridge, CIMR

Parts of this talk are inspired by Tim Love’s talk at

www-h.eng.cam.ac.uk/help/tpl/talks/projman.php

Some or all of:
Countless lines of code
Years of development
More than one developer
Thousands of users
Years of use
Hundreds of citations
Supported explicitly by grant(s)
Revenue stream from licensing

Antonym: jiffy

Microsoft survival guide:
“Of the most expensive software projects, about
half will eventually be cancelled for being out of
control. Many more are cancelled in subtle
ways.”

Oxford University/Computer Weekly:
“Only 16% of IT projects were considered
successful”

The Standish CHAOS report:
"the software success rate is 24% overall, with
numbers even lower for large projects,
especially those in the government sector"

Cambridge University
Computer Science Tripos

Part IB

At the end of the course

 You should know how writing programs with tough

assurance targets and/or in large teams differs from small

programming exercises

 You should appreciate the waterfall, spiral and

evolutionary models of development and be able to

explain which kinds of software development might

profitably use them

 You should appreciate the value of tools and the difference

between incidental and intrinsic complexity

 You should understand the basic economics of the

software development lifecycle

You are both

customer and vendor

Most problems in

successful delivery of

software arise from

customer nescience &

misunderstandings

between customer

and vendor

Software may be written as a one-off yet end
up being used for years

Software is unlikely to depend on
commercial libraries

Software may only ever be used in house
Software may well result in freeware
Software may well be written by one person
Software may have cutting edge technology
Software may not have much of a GUI

How can we adapt Software Engineering
procedures to this situation?

Managing Software Projects

Language and Libraries

Productivity

Bugfixes

Release

Legacy

Scripting languages are good for

development speed
• Slow execution speed

Compiled languages are good for

execution speed
• Arguably, slower to develop

Use what others are using
• You may not have a choice – lab policy

• You may not have a choice – library use

 e.g. cctbx is in c++ with python wrappers

THE GOOD THE BAD

 Use the standard libraries
in the languages

• e.g. stl standard template
library in C++

 Use libraries so that you
don’t reinvent the wheel

• cctbx symmetry libraries

• mtz reading libraries

 Use libraries that everyone
else is using

• This acts as a check on
their bugginess

 Be hyper-aware of the

licensing conditions of the

libraries you use

• Don’t use commercial

libraries

 Avoid libraries that contain

massively more that you need

• e.g. the whole NAG library

for a single matrix inversion

routine

 Avoid libraries that are bound

to an operating system

Splitting the task into de-coupled sections
has many benefits
• Others can extend the program
• Developers/teams can work independently
• Decisions about adding features can be deferred

This is the aim of object oriented languages
• But have they succeeded?
• Objects have failed: Notes for debate

by Richard P. Gabriel

“We find that object-oriented languages have succumb
(sic) to static thinkers who worship perfect planning over
runtime adaptability, early decisions over late ones, and
the wisdom of compilers over the cleverness of failure
detection and repair.”

Ed Post

Real Programmers Don't Use Pascal (1982)

What about the rest?

“Good programmers are 10 times more

productive than bad”
• “no conventional salary structure provides for this

kind of dynamic range” (Microsoft survival guide)

PIs will often give a good/busy programmer

a new task rather than temporarily

deploy/employ a student/postdoc

 If a programmer is seconded, there may be

failures elsewhere as a consequence
• How much task-balancing is your responsibility?

Adding staff can slow down a project

You can use an IDE
• Integrated Development Environment

“Unix is the perfect IDE”
• vi, emacs, sed

 Fast search/replace, file opening/closing

 “Think-speed” editing

• find, grep, locate

• Shell scripts for scripting editing etc

• No window bloat, menu hunting

 No pointing and clicking with mouse

“What language are you writing...? If you're
writing Delphi then I don't think VIM is
going to help you. If you're writing a C#
app, maybe you're better off in Visual
Studio. Java? Maybe stay in Eclipse. But for
many languages, like C, Perl, Python, etc,
people report they are more productive in a
text-only editor (like VIM or EMACS).”

Warren P.

August 27th 2912 20.52

Stackexchange

Also called Version or Source Control

At its most basic, each recorded change

to the code is given the next revision

number in sequence,
• starting at revision 1

Handles software management
• Timestamps

• Reversion to earlier states of the code

• Comparisons of different revisions

Revision control boosts your productivity

“Editions”

The Septaugint Greek

The Septaugint by Old Latin

The Septaugint by Aquila

Luther German Bible

Saint Gerome Latin Vulgate

Tyndale Bible

Great Bible

Bishop’s Bible

King James Bible

Revised Version

Revised Standard Version

New Revised Standard Version

Good News Bible

Revised International Version

It also became an essential tool for

software management

and a major field in its own right

Revision control is

embedded in may

software

applications

e.g. Word (undo,

track changes)

e.g. Wikipedia

 Copy-Lock-Modify:
• Microsoft Visual SourceSafe (VSS)

Copy-Modify-Merge:
• Central Repository

 CVS

 subversion (aka svn)

• Distributed

 git

 bazaar

 Inhibits parallel
development

Conflicts easily
generated
• Harry modifies A, Sally

modifies B but together
the modifications
cause a bug

• No responsibility for
clashes

Good for binary
files

Facilitates parallel

development

Conflicts detected

automatically
• Harry modifies A, Sally

modifies B but “last

one in” has

responsibility to fix

clashes before adding

their changes

Poor for binary files

 trunk
• Current releasable version
• Must compile
• “Don’t work in the trunk”

 tags
• Releases and versions
• create once

• never modified

 branches
• each branch can be a disjoint component of your

architecture

• works best with loosely coupled, highly OO design
• requires code revision and integration testing

 Get to work
 Sit at your desktop computer and login
 Read email
 Find bug report from a guy in the US
 Work on bugfix all day without solving problem

but having found some typos and added a small
feature from the todo list

 Realise the problem while cycling home
 Finish bugfix at home
 Save the changes
 Make your bugfix available to the guy in the US
 Let everyone in group know a bugfix is available
 Go to sleep

You can work in the trunk
• don’t branch, although tags may be useful

Use as a complete digital notebook
Facilitates code development on multiple

platforms/computers
Code changes are easily available to users

who may have requested a bugfix/feature
Can set up automatic email notification of

changes to “interested parties” e.g. CCP4
 If the repository is off site, you get off site

backup automatically

No history-aware merge capability,

making merging of branches error prone
• Fails to merge changes if files are renamed

No way of pushing changes to another

developer without committing to the

central repository

Offline commits are not possible
• No “personal” repository

• Code must compile and have passed regression

tests to be committed

Major advantages for projects with

many “equivalent” developers

Don’t go to conferences

Don’t go to developers’ meetings

Don’t write papers

Don’t have coffee breaks…

For much of the time you're likely to be

working alone and unsupervised

You may have no-one to bounce ideas off

You may have no-one who is interested in

your progress

You need to manage your strengths and

weaknesses

 Keep different kinds of work available so that
there's always something to match your mood
• Bugfixes, new features, documentation, literature

 Be aware of your 'displacement activities'
• Try to make them something useful (documentation).

• A common diversion is to over-develop tools and utilities
that are not important/useful/part of the project

 Make a list of easy things that you can tick off
 Beware of Burnout

• Sometimes “less is more”

 Communicate with developers in other labs
 Keep the goal of the project in mind

U.S. Navy Capt. Grace Murray Hopper

Logbook 1947

National Museum of American History

"Things were going badly; there was something wrong in one of the

circuits of the long glass-enclosed computer," she said. "Finally, someone

located the trouble spot and, using ordinary tweezers, removed the

problem, a two-inch moth. From then on, when anything went wrong with a

computer, we said it had bugs in it."

Microsoft Survival Guide:
“industry average experience suggests that
there are 15-50 errors per 1000 lines of
delivered code”

Computer Weekly:
"Despite testing procedures, even a best-of-
breed product usually still contains a margin of
error, typically around 5%. At this point it may
be deemed by both vendor and customer that
trying to reduce this percentage is a case of
diminishing returns and not worth the additional
Investment."

 Don’t introduce bugs in the first place
• Know the project and the code backwards

 Code compilation
• Huge advantage of compiled over scripting languages

 Unit and Regression tests
• Makes sure that all features in the test suite work correctly

• Stop old bugs being reintroduced

 Bug reports from users
• Litter the code with assert statements where there could

be numerical exceptions, and print your email address if
they are triggered

 Power users may send bug report and bugfix
together

 Code walkthrough
• Get someone to listen as you describe the code

 Use "defect seeding"
• Put 10 deliberate errors into your code or documentation

and get someone to check it. If they find 20 errors but
only 5 of them are your deliberate ones then you might
hypothesise that since they only found half of the
deliberate errors they only found half of the other errors,
so there are 30 unintentional errors

• Some people find this a fun way to work

• Don't forget to remove seeded bugs!

 Run a bug-finding competition
• e.g. LATEX documentation prize for most number of bugs

Testing is the process of validating and

verifying that the software
• works as expected – bugs/features

• meets the requirements that guided its design and

development – publications/grants

Testing can never completely identify all the

defects

Testing cannot establish that software

functions properly under all conditions but

can only establish that it does not function

properly under specific conditions

 Design something quickly and to a high standard, but it will not be cheap.

 Design something quickly and cheaply, but it will not be of high quality.

 Design something with high quality and cheaply, but it will take a long time.

Testing is a

trade-off between

budget,

time &

quality

You must have a test suite
• Basic component of software development

Test suites can be very boring to set up
• Set up data

• Set up running jobs

• Set up result checking

• Set up database of results/display

Range from minutes to days of CPU to run
Good, large test suites can and very often

do reveal interesting science

Web applications may present difficulties

because of the number of components that

may be involved

 If there's a problem (in particular

performance-related) the cause could be:
• the network

• the database

• the web server (with modules for PHP support)

• the web proxy-server or

• the browser itself (which comes in various varieties

each with different plug-ins, java interpreters …).

Misunderstandings can arise as soon as the
program needs to be used by someone
other than the programmer

Documentation, more documentation, and
even more documentation
• Self-documenting code

• Comments in code

• Website

• Publications

• Tutorials

• Seminars

Hard
• One of the aims of software engineering is to improve

the accuracy of these estimates

Decomposing the task helps
• If tasks are small then they're more likely to be

comparable, making future estimation easier

80% of time is spent on unplanned rework
The industry average for code production is

8-20 lines of correct code per day
• independent of the language

New programmers tend to be over-optimistic
• More experienced ones tend to "sandbag"

May not be your decision
• e.g. CCP4, phenix release schedule

Preceded by a “code freeze”
• No new features

• Only bugfixes allowed

• Can go on for far longer than intended

Before release you will have to license
the software
• You cannot put the code in the

public domain
 Public domain makes works a free-for-all

e.g. the works of Shakespeare

• Public domain is only for works for
which the copyright has EXPIRED

• Copyright holders cannot give up copyright

• Therefore, any user but yourself will need to
know under what conditions they can use the
software

Licensing is the prerogative of the
copyright holder

The creator of the work owns the
copyright
• No need to register copyright, automatic

• Lasts until 70 years after death of creator

EXCEPT if the work is created in the
course of employment
• Your employer owns the copyright

• Even if the work is done in your “spare time”

• Lasts for 120 years from the date of creation

GRATIS LIBRE

Copyleft
• Offers the right to distribute copies and modified

versions of a work and requiring that the same rights
be preserved in modified versions of the work

• Copyleft licences are VIRAL LICENCES

Weak copyleft
• Used for the creation of software libraries

• Only changes to the weak-copylefted library itself
become subject to the copyleft, not the linked
software

Non-copyleft
• Do not require the licensee to distribute derivative

works under the same license

 There is an ongoing debate as to which class of

license provides the greater degree of freedom

 This debate hinges on issues such as the definition

of freedom and whose freedoms are more

important

 Copyleft maximizes the freedom of all potential

future recipients of a work (freedom from the

creation of proprietary software)

 Non-copyleft free software licenses maximize the

freedom of the initial recipient (freedom to create

proprietary software)

Distribution is where previous decisions
may come back to haunt you
• Will it be trivial to port?
• Are the libraries suitable for distribution?

Source code/executables
• If source code you will need to distribute build

system also
• If executable, must supply it for (specified) OS

There are MANY routes to distribution
• “email me”
• CCP4
• Program specific website
• Start a company to handle distribution

GRATIS LIBRE

Your institution will have a standard

revenue sharing policy
• The employer will get most of the money

• True even if you leave your employer

Grant terms may involve revenue sharing

with the grant agency

Net Revenue Inventor(s) Department(s) University

Up to £10,000 75% 12.5% 12.5%

£10,000 - £60,000 65% 17.5% 17.5%

£60,000 - £250,000 50% 25% 25%

Over £250,000 40% 30% 30%

THREE-WAY SHARING TWO-WAY SHARING

There will be a lawyer

involved at some point

Maintenance is
• “65% new requirements”

• “18% changes for new OS”

• “17% bug fixes”

Your software may end up being wrapped in
another application
• Issues of accreditation arise

• Others will want to “fix” the version your software at
the one they used for development and are not
interested in your later work

Your software will be superseded

