
Some thoughts on interface design 

Harry Powell
MRC Laboratory of Molecular Biology
23rd August 2013



Before we start

Look at your smartphone/tablet/laptop/PC - which 
apps/applications do you 

• enjoy using?
• even think about when you use them?
• use in spite of some awkwardness?
• think “why do I have to do that” about?
• use in preference to other (equivalent) software?
• is it “intuitive”? what does that mean?



Interface design is a huge topic

Some thoughts

• Is a gui even necessary?
• Identify your users
• Address the goals, not the tasks
• The computer should do the work, and the person 

should do the thinking
• Avoid introducing excise



Technical considerations

• Do we need a GUI?
• Choice of programming language
• Communication between GUI and application
• Who does the programming?



Is a GUI even necessary?

e.g. typing 
• xia2 /my/data/are/here

will process the images in the directory /my/data/are/here - 
possibly easier than - 



Choice of language/toolkit

Can be almost irrelevant, but - 
• obsolete toolkits are often very stable but

• may be inflexible
• may not be transportable

• is it available for (all) your intended platforms?
• QT (pyQT, Qt/C++...)?
• Tk (Tcl/Tk, tkinter...)
• wxWidgets
• Java
• Aqua, WinAPI...

• today’s “flavour of the month” will be obsolete one day
• GUI design software is probably not a good answer



Interaction with application

Choices
• GUI and application access the same variables - 

essentially a monolithic application (ipmosflm)
• GUI writes commands and reads output file(s) 

(ccp4i) 
• GUI communicates more directly, e.g. via sockets 

(iMosflm)
• e.g. Application writes html (via PHP, Perl, Javascript 

etc.) to produce a web interface

Job for the interface programmer, not for the interface 
designer (these may be the same person!)



GUIs and applications

A GUI might be an afterthought, but is probably the way 
most people use the application - so it is important

• a poor application will not be improved by adding a 
GUI

It is best to separate
• GUI design
• Application programming

since they address different problems, but GUI designers 
and application programmers should work together

Application programmers may have to modify their code 
substantially for the benefit of the GUI (particularly i/o).



Application programming vs GUI design

An application programmer should know about 
• the science and algorithms that they are 

implementing - the tasks
• what input and output is important

A GUI designer needs to know 
• about users
• absolutely nothing about the algorithms
• something about the science can be helpful
• which goals are important
• what input and output is important



Who will use my GUI?

Basically three groups - 

novices perpetual 
intermediates

experts

experience

pr
op

or
ti
on

 o
f 
us

er
s

optimise for these



Novices & experts

• Novices
• no-one wants to remain one
• they are intelligent but busy
• need to know how to operate the product, do not 

need to know how it works
• will become intermediates if they continue using the 

product
• Experts

• Influence novices disproportionately
• Are trusted by other users
• need access to “rarely used” functions

These are not typical users



Intermediates

• Majority of users
• You want your novices to be in this group as soon as 

possible
• They are not all the same -

• design for specific user types with specific needs
• if you try to please everyone equally, they will 

probably all be dissatisfied



Caveat venditor! You are not typical

You may be an expert in the use of your software - most 
of your users are not
• some users will be experts, and some will be novices, 

but you cannot design a GUI primarily for these groups

Find out about what your users do, how they work, etc etc 
• ask them
• observe them using 

• previous versions
• other software to achieve the same goal

Don't base your GUI on your needs/wants



Goal directed design

Users are interested in goals, e.g.
• “I want to integrate these images”
• “I want to analyse the active site in this enzyme”

Applications programmers are interested in tasks, e.g.
• sort a list of values
• calculate an FFT
• minimise this value via the right target function

GUI designers need to bridge this gap
• the user sees the skin of the GUI (goals)
• the body of the GUI connects the goals with the tasks



Human thinks, computer works

e.g. User chooses the images to process, then the 
program 

• reads & interprets all the image headers
• sets processing parameters accordingly
• presents values/output clearly
• updates available actions



Main windows

• Should be the first window to appear
• Because they are persistently visible, their appearance 

should not be jarring
• relatively neutral appearance

• Navigation between the individual tasks should be 
straightforward - “intuitive”

• Normal range of major actions
• Typical user is an intermediate
• Access to “advanced” features should be fairly obvious
• Have “sovereign posture”







Pop-ups, drop-downs & other transients

• Temporarily visible
• maybe less neutral appearance?

• Transient dialogues
• for advanced intermediates and experts
• support sovereign applications
• enhance functionality
• more complex options
• rarely used options



Avoid adding excise

Actions which are necessary to complete a task but do not 
contribute directly to its progress e.g. the program 
• encounters an error
• knows what the error is
• tells you what the error is
• knows how to fix it
• won't let you do anything else until the error is fixed
• still makes you push a button



More excise... 7 clicks to the main window



Serious about GUI design...

Caution - 
• Contains strong views 
• Essential reading for the 

serious interface designer
• It will tell you that your 

current interface is probably 
all wrong...

ISBN 978-0-470-08411-3
currently ~€35



or just want to learn a little?

A classic in the field of the 
psychology of design

ISBN 978-0-465-06710-7
currently ~€10

http://en.wikipedia.org/wiki/Special:BookSources/978-0-465-06710-7


In summary

• Is a gui even necessary?
• Identify your users
• Address the goals, not the tasks
• The computer should do the work, and the person 

should do the thinking
• Avoid introducing excise


