Fourier methods

L ukas Palatinus

Institute of Physics
AS CR, Prague, Czechia

Outline

= Fourier transform:
* mathematician's viewpoint
= crystallographer’s viewpoint
= programmer’s viewpoint

= Practical aspects
= |ibraries, binding
= sample code

Fourier transform —
mathematician’s viewpoint

Any (reasonably well behaved) function in one, two or more
dimensions can be expressed as a sum (or integral) of basis
functions:

f(xl'XZJ xn) = Z gi(x1'x2' xn)

Not all bases are suitable for all functions. Smooth, bound functions
varying relatively slowly in space (or time) may be very well
approximated by a decomposition to constituting frequencies and
their amplitudes. This decomposition is called Fourier transform. If
the function is periodic, its decomposition has countably many
components and is called a Fourier sum. Otherwise the number of
components may be infinite and the function is expressed by a
Fourier integral.

Fourier transform —
mathematician’s viewpoint

Fourier sum in 1D:

f(x) = z d,cos(nx + ¢,)
n=0

Fourier transform —
mathematician’s viewpoint

oon]

VAT A
MVRVASR VA

Fourier transform —
mathematician’s viewpoint

A /\
NWAWE %/\ L%
AVRYA WVl

wave 1. cos(x) wave 3: 4.5c0s(3x+1.6)
wave 2: 2cos(2x+0.2) wave 4. 3.8cos(6x+3.5)

r—Y

Fourier transform —
mathematician’s viewpoint

Fourier sum in 1D:

f(x) = z d,cos(nx + ¢,)
n=0

Using cos(a + b) = cos(a) cos(b) — sin(a) sin(b) we can get
f(x) = z [a,,cos(nx) + b,,sin(nx)]

where a,, = d,, cos(@,), b, = —d, sin(¢@;,)

Fourier transform —
mathematician’s viewpoint

Fourier sum in 1D:

f(x) = Z [a,,cos(nx) + b,,sin(nx)]

n=0
Euler's formula:

cos(nx) + isin(nx) = e™

Then:

o0

f(x) = z

= [cos(nx) + i sin(nx)] +

+ z " -;lb [cos(nx) + i sin(nx)] =

(0]
R inx

n=—oo

n=-—00

where E, = d,,e'? and is obtained from F,, = %foznf(x)e“’"xdx

Fourier transform —
mathematician’s viewpoint

Fourier sum in nD:

00,00,... 0,00,...
f(r) = Z [apcos(h.r) + b, sin(h.r)] = 2 Fehr
h=0,0,... h=—00,—00___

If the function is periodic in integer intervals, the factor 2r must be
written expicitly:

[apcos(2mh. 1) + by, sin(2rh.1) | = z Fy, e2mihr
{ h=—0o0

NE

=

h

Fourier transform —
crystallographer’s viewpoint

The physics of the diffraction is such that the amplitude and phase of
the diffracted beams is (approximately) equal to the amplitude and
phase of the Fourier coefficients of the scattering density:

F, = Jp(r)ezmh.rdv
Coefficients F, are called structure factors.

Conversely, the electron density can be calculated as a Fourier
summation of the structure factors.

1 .
p(l‘) :V Z Fhe—th.r

h=—c

x=0.000

1.0

0.8

0.6 {

0.4 -

0.2

0.0

x=0.000

max

max

0.0

0.2

0.4

0.6

0.8

1.0

|:002

12

DOOOL

/%@Q\\\\\A
A
m. @ @ @ A“
0y,

—

=

000000

Eight reflections (+ their symmetry equivalents) are enough to
reproduce the main features of the density map

20

Fourier transform —
crystallographer's viewpoint

In diffraction we can routinely measure the amplitude of the structure
factors, but very rarely the phases.

Hence, the inverse transform

p(l‘) - z Fhe—zmh.r

h=-—0o0

cannot be directly performed

crystallopraphic phase problem

Phases and amplitudes

What part of information is carried by amplitudes and what by phases?

& ¢

http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.ntml

Phases and amplitudes

What part of information is carried by amplitudes and what by phases?

Amplitudes from duck

o ‘ & A
phases from cat -

http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.ntml

Phases and amplitudes

What part of information is carried by amplitudes and what by phases?

Amplitudes from cat
+

- .E
phases from duck __

http://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.ntml

Fourier transform —
programmer’s viewpoint

F, = Jp(r)eZRih.rdV

cannot be directly calculated, unless the scattering density is available
analytically.

1 < .
,D(l‘) — V 2 Fhe—th.r

h=—0o0
Cannot be calculated, because of the infinite sum.

Solution: sample the scattering density on a regular grid, creating an
approximation of the real density with finite number of ,parameters®.

Fourier transform —
programmer’s viewpoint

oon]

|\

ANTATN S
AV \V/v \v/i/ :

Fourier transform —
programmer’s viewpoint

N\

N

e V

Aliasing: frequencies n and n+kN make equivalent contribution to the
discretized function

Fourier transform —
programmer’s viewpoint

Fourier transform —
programmer’s viewpoint

Fourier transform —
programmer’s viewpoint

|

Aliasing: frequency N/2 has only one parameter (phase can be set to 0).

Fourier transform —
programmer’s viewpoint

Fourier transform is in its general (,naive“) implementation a O(N?)
operation.

In 1965, Cooley & Tukey published an algorithm for discrete Fourier
transform with O(N.logN) complexity — FFT

First FFT algorithms operated best on grid sizes of the form 2". Modern
algorithms do also prime-factor FFT.

It IS, however, still useful to have grid sizes that can be factored to small
prime factors.

Practical aspects
conventions

The sign of the phase factor and the normalization constant in the
Fourier transform is a mere convention:

: 1 :
R, = fp(r)emuh.rdv F, = ij(x)e—th.rdV
1 < —2mih.r N 2mih.r
p(r) = v z Fre | f(r) = z Fpe“™™
h=—c h=—o0

Unfortunately, these conventions are opposite in crystallography and in
most mathematical literature.

Be careful when using libraries or when you copy others'
Implementations!

Practical aspects

libraries, binding

There are many libraries that contain FFT functionality

single-precision complex, 1d transforms -

powers of two *—e

speed (mtlops)

T51L60T
POEFO 1T [F

OITLLLIT [frs
TEbbssEe M

http://www.fftw.org/speed/

3.0 GHz Intel Core Duo, Intel compilers, 64-bit mode

intel-ipps
intel-mkl-dtti in-place
fFbw3 out-of-place
intel-mkl-dfti cut-ot-place
ffow3 in-place

w2

frtpack

grecn

sciport

dspT9-morris
dsp79-wita
gsl-mixed-radix

soren sen-ctfftsr

- napack

morris82
cwplib

ki ssftt
bloodworth
singleton
dspT9-singleton
harm
monnicr
gpfa

krukar

asB3

qft

ransoim
glassman
dsp79-FFT 842
nr-¢

burru s-stften
dspT9-rader
CIOSS
teneyck
as117

Practical aspects
libraries, binding

There are many libraries that contain FFT functionality

single-precision complex, 1d transforms

non-powers of two

11000 o—e ftwd £-pl
10500 e TH”LECE -
10000 g—=a intel-mkl-dtti cut-of-place
9500 ww intcl-mkl-dfti in-place
9000 frow2
8500 cwplib
8000 fitpack
7500 dspTo-wita

S~~~ 7000 @—o gsl-mixed-radix

U @ 6500 — — kissfft

q) g. 6000 Sty singleton

q-) = &--¢ pgpfa

Q g 5500 dsp79-singleton

=

7)) D 5000 - napack

R = 4500 monnier

o - N
4000 —— glassman

| -

o 3500 o o teneyck

;. 3000 — asll7
2500

4= .

= 2000

> 1500

1000

% 508 -

= o=

= 25 &

=3 552

= =

3.0 GHz Intel Core Duo, Intel compilers, 64-bit mode

Practical aspects
libraries, binding

FFTWS3 — very fast, versatile, free FFT library.
Some features:

« Single and double precision routines

Real-to-real, real-to-complex, complex-to-complex transforms

« Dedicated 1D, 2D, 3D and nD transforms

* Many different FFT algorithms available

« Options for automatic finding of the best algorithm

» In-place and out-of-place transforms

* Natively called from C, includes wrapper for Fortran, wrappers available for
Python, Java, Perl, Ruby, Delphi and more...

» Support for parallel programming

» Binaries available for Windows

» Source code available for compilation on exotic platforms

Practical aspects
sample code

TYPE FFTInstr
INTEGER (KIND=8) :: plan
INTEGER :: dir
REAL :: Norm

END TYPE FFTInstr

Interface to the FFTW subroutine

IThkkhkhkhkhkhkhkhhhhkhkhkhhhhhkhkhhhhhkhkhhhhhhkhhhhhkhkhkhhhkhkhkhhhhhkhkhkhhhkhkhhkhhhhkhkkhk

SUBROUTINE FFT (instr, rho)

Thkkkhkhkhkkhhkhhhkhhhkhhkhkhhkhhhkhhkhhhkhhhkhhkhkhhkhhhkhhkhhhkhhhkhhkhkhhkhhhkhkhkhhkhhkk

USE SF_Module

IMPLICIT NONE

TYPE (FFTInstr) :: instr
REAL, DIMENSION(:) :: rho

call sfftw_execute (instr3plan)
IF (instr%dir==-1) rho=rho/instr%norm

END SUBROUTINE FFT

Practical aspects
sample code

IR R b I b I i R I I e b I b b b b b b b b b I b b b b b 2R b b dh dh b SR dh b Sh b 2b b b dh I b db b b 2 Sh b db b b S b b db b 4

SUBROUTINE MakeFFTPlan (NVox,rho,sf,dir,infastfft,instr)
!**
USE SF_Module
IMPLICIT NONE
INTEGER, PARAMETER :: FFTW_FORWARD=+1, FFTW_BACKWARD=-1

INTEGER, PARAMETER :: INTEGER, PARAMETER :: FFTW_MEASURE=0, FFTW_ESTIMATE=64
INTEGER, PARAMETER :: INTEGER, DIMENSION(:) :: NVox
REAL, DIMENSION(:) :: rho, sf

INTEGER :: Method, dir
LOGICAL :: InFastFFT
TYPE (FFTInstr) :: instr

IF (InFastFFT) THEN
Method=FFTW_MEASURE

ELSE
Method=FFTW_ESTIMATE

ENDIF

instr%dir=dir

IF (dir==r2cFT) THEN
call sfftw plan dft r2c(instr%plan,size (NVox) A NVox, rho,sf, method)
instr%norm=1.

ELSEIF (dir==c2rFT) THEN
call sfftw plan dft c2r(instr%plan,size (InNVox),6 InNVox,insf,inrho, method)
instr%norm=product (InNVox)

ENDIF

IF (instr%plan==0) CALL StopProgram('Error, cannot initiate the FFT routine. ‘)

END SUBROUTINE MakeFFTPlan

