
Fourier methods

Lukas Palatinus

Institute of Physics

AS CR, Prague, Czechia

 Fourier transform:

 mathematician‘s viewpoint

 crystallographer‘s viewpoint

 programmer‘s viewpoint

 Practical aspects

 libraries, binding

 sample code

Outline

Any (reasonably well behaved) function in one, two or more

dimensions can be expressed as a sum (or integral) of basis

functions:

𝑓 𝑥1, 𝑥2, … 𝑥𝑛 = 𝑔𝑖 𝑥1, 𝑥2, … 𝑥𝑛

Not all bases are suitable for all functions. Smooth, bound functions

varying relatively slowly in space (or time) may be very well

approximated by a decomposition to constituting frequencies and

their amplitudes. This decomposition is called Fourier transform. If

the function is periodic, its decomposition has countably many

components and is called a Fourier sum. Otherwise the number of

components may be infinite and the function is expressed by a

Fourier integral.

Fourier transform –

mathematician‘s viewpoint

Fourier sum in 1D:

𝑓 𝑥 = 𝑑𝑛cos 𝑛𝑥 + 𝑛



𝑛=0

Fourier transform –

mathematician‘s viewpoint

0 1 2 3 4 5 6

Fourier transform –
mathematician‘s viewpoint

0 1 2 3 4 5 6

wave 1: cos(x) wave 3: 4.5cos(3x+1.6)

wave 2: 2cos(2x+0.2) wave 4: 3.8cos(6x+3.5)

3

4
2

1

Fourier transform –
mathematician‘s viewpoint

Fourier sum in 1D:

𝑓 𝑥 = 𝑑𝑛cos 𝑛𝑥 + 𝑛



𝑛=0

Using cos 𝑎 + 𝑏 = cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏 we can get

𝑓 𝑥 = [𝑎𝑛cos 𝑛𝑥 + 𝑏𝑛sin⁡(𝑛𝑥)]



𝑛=0

where 𝑎𝑛 = 𝑑𝑛 cos 𝜑𝑛 , 𝑏𝑛 = −𝑑𝑛 sin 𝜑𝑛

Fourier transform –

mathematician‘s viewpoint

Fourier sum in 1D:

𝑓 𝑥 = [𝑎𝑛cos 𝑛𝑥 + 𝑏𝑛sin⁡(𝑛𝑥)]



𝑛=0

Euler‘s formula:

cos 𝑛𝑥 + 𝑖 sin 𝑛𝑥 = 𝑒𝑖𝑛𝑥

Then:

𝑓 𝑥 =
𝑎𝑛 − 𝑖𝑏𝑛
2
cos 𝑛𝑥 + 𝑖⁡sin⁡(𝑛𝑥)



𝑛=0

+

+
𝑎−𝑛 + 𝑖𝑏−𝑛
2

[cos 𝑛𝑥 + 𝑖⁡sin⁡(𝑛𝑥)]

0

𝑛=−

=

= 𝐹𝑛𝑒
𝑖𝑛𝑥

∞

𝑛=−∞

where 𝐹𝑛 = 𝑑𝑛𝑒
𝑖𝜑𝑛 and is obtained from⁡𝐹𝑛 =

1

2𝜋
 𝑓(𝑥)𝑒−𝑖𝑛𝑥d𝑥
2𝜋

0

Fourier transform –

mathematician‘s viewpoint

Fourier sum in nD:

𝑓 𝐫 = [𝑎𝒉cos 𝐡. 𝐫 + 𝑏𝑛 sin 𝐡. 𝐫] = 𝐹𝐡𝑒
𝑖𝐡.𝐫

∞,∞,…

𝐡=−∞,−∞…

,,…

𝐡=0,0,…

If the function is periodic in integer intervals, the factor 2 must be

written expicitly:

𝑓 𝐫 = [𝑎𝐡cos 2𝜋𝐡. 𝐫 + 𝑏𝐡 sin 2𝜋𝐡. 𝐫] = 𝐹𝐡𝑒
2𝜋𝑖𝐡.𝐫

∞

𝐡=−∞



𝐡=0

Fourier transform –

mathematician‘s viewpoint

The physics of the diffraction is such that the amplitude and phase of

the diffracted beams is (approximately) equal to the amplitude and

phase of the Fourier coefficients of the scattering density:

𝐹𝐡 = 𝜌(𝐫)𝑒
2𝜋𝑖𝐡.𝐫d𝑉

Coefficients Fh are called structure factors.

Fourier transform –

crystallographer‘s viewpoint

Conversely, the electron density can be calculated as a Fourier

summation of the structure factors.

𝜌 𝐫 =
1

𝑉
 𝐹𝐡𝑒

−2𝜋𝑖𝐡.𝐫

∞

𝐡=−∞

11

12

F002

max

max

13

 F002

 +

F040

14

 F002

 +

F040

+

F031

+

F0-31

15

16

17

18

19

20

Eight reflections (+ their symmetry equivalents) are enough to

reproduce the main features of the density map

In diffraction we can routinely measure the amplitude of the structure

factors, but very rarely the phases.

Hence, the inverse transform

𝜌 𝐫 = 𝐹𝐡𝑒
−2𝜋𝑖𝐡.𝐫

∞

𝐡=−∞

cannot be directly performed

crystallopraphic phase problem

Fourier transform –

crystallographer‘s viewpoint

Phases and amplitudes
What part of information is carried by amplitudes and what by phases?

h
tt

p
:/
/w

w
w

.y
s
b

l.
y
o

rk
.a

c
.u

k
/~

c
o
w

ta
n

/f
o
u

ri
e

r/
fo

u
ri
e

r.
h

tm
l

Phases and amplitudes
What part of information is carried by amplitudes and what by phases?

h
tt

p
:/
/w

w
w

.y
s
b

l.
y
o

rk
.a

c
.u

k
/~

c
o
w

ta
n

/f
o
u

ri
e

r/
fo

u
ri
e

r.
h

tm
l

Amplitudes from duck

+

phases from cat

Phases and amplitudes
What part of information is carried by amplitudes and what by phases?

h
tt

p
:/
/w

w
w

.y
s
b

l.
y
o

rk
.a

c
.u

k
/~

c
o
w

ta
n

/f
o
u

ri
e

r/
fo

u
ri
e

r.
h

tm
l

Amplitudes from cat

+

phases from duck

𝐹𝐡 = 𝜌(𝐫)𝑒
2𝜋𝑖𝐡.𝐫d𝑉

cannot be directly calculated, unless the scattering density is available

analytically.

𝜌 𝐫 =
1

𝑉
 𝐹𝐡𝑒

−2𝜋𝑖𝐡.𝐫

∞

𝐡=−∞

Cannot be calculated, because of the infinite sum.

Solution: sample the scattering density on a regular grid, creating an

approximation of the real density with finite number of „parameters“.

Fourier transform –
programmer‘s viewpoint

0 1 2 3 4 5 6

Fourier transform –
programmer‘s viewpoint

0 1 2 3 4 5 6

Fourier transform –
programmer‘s viewpoint

Aliasing: frequencies n and n+kN make equivalent contribution to the

discretized function

0 1 2 3 4 5 6

Fourier transform –
programmer‘s viewpoint

0 1 2 3 4 5 6

Fourier transform –
programmer‘s viewpoint

0 1 2 3 4 5 6

Fourier transform –
programmer‘s viewpoint

Aliasing: frequency N/2 has only one parameter (phase can be set to 0).

Fourier transform –
programmer‘s viewpoint

Fourier transform is in its general („naïve“) implementation a O(N2)

operation.

In 1965, Cooley & Tukey published an algorithm for discrete Fourier

transform with O(N.logN) complexity – FFT

First FFT algorithms operated best on grid sizes of the form 2n. Modern

algorithms do also prime-factor FFT.

It is, however, still useful to have grid sizes that can be factored to small

prime factors.

Practical aspects
conventions

The sign of the phase factor and the normalization constant in the

Fourier transform is a mere convention:

𝐹𝐡 = 𝜌(𝐫)𝑒
2𝜋𝑖𝐡.𝐫d𝑉

𝜌 𝐫 =
1

𝑉
 𝐹𝐡𝑒

−2𝜋𝑖𝐡.𝐫

∞

𝐡=−∞

Unfortunately, these conventions are opposite in crystallography and in

most mathematical literature.

Be careful when using libraries or when you copy others‘

implementations!

𝑓 𝐫 = 𝐹𝐡𝑒
2𝜋𝑖𝐡.𝐫

∞

𝐡=−∞

𝐹𝐡 =
1

𝑉
 𝑓(𝑥)𝑒−2𝜋𝑖𝐡.𝐫d𝑉

Practical aspects
libraries, binding

There are many libraries that contain FFT functionality

h
tt
p
:/
/w

w
w

.f
ft

w
.o

rg
/s

p
e

e
d
/

3.0 GHz Intel Core Duo, Intel compilers, 64-bit mode

Practical aspects
libraries, binding

h
tt
p
:/
/w

w
w

.f
ft

w
.o

rg
/s

p
e

e
d
/

There are many libraries that contain FFT functionality

3.0 GHz Intel Core Duo, Intel compilers, 64-bit mode

Practical aspects
libraries, binding

FFTW3 – very fast, versatile, free FFT library.

Some features:

• Single and double precision routines

• Real-to-real, real-to-complex, complex-to-complex transforms

• Dedicated 1D, 2D, 3D and nD transforms

• Many different FFT algorithms available

• Options for automatic finding of the best algorithm

• In-place and out-of-place transforms

• Natively called from C, includes wrapper for Fortran, wrappers available for

Python, Java, Perl, Ruby, Delphi and more...

• Support for parallel programming

• Binaries available for Windows

• Source code available for compilation on exotic platforms

Practical aspects
sample code

! Interface to the FFTW subroutine

!**

 SUBROUTINE FFT(instr, rho)

!**

!

 USE SF_Module

 IMPLICIT NONE

 TYPE(FFTInstr) :: instr

 REAL, DIMENSION(:) :: rho

 call sfftw_execute(instr%plan)

 IF (instr%dir==-1) rho=rho/instr%norm

 END SUBROUTINE FFT

 TYPE FFTInstr

 INTEGER(KIND=8) :: plan

 INTEGER :: dir

 REAL :: Norm

 END TYPE FFTInstr

Practical aspects
sample code

!**

 SUBROUTINE MakeFFTPlan(NVox,rho,sf,dir,infastfft,instr)

!**

 USE SF_Module

 IMPLICIT NONE

 INTEGER, PARAMETER :: FFTW_FORWARD=+1, FFTW_BACKWARD=-1

 INTEGER, PARAMETER :: INTEGER, PARAMETER :: FFTW_MEASURE=0, FFTW_ESTIMATE=64

 INTEGER, PARAMETER :: INTEGER, DIMENSION(:) :: NVox

 REAL, DIMENSION(:) :: rho, sf

 INTEGER :: Method, dir

 LOGICAL :: InFastFFT

 TYPE(FFTInstr) :: instr

 IF (InFastFFT) THEN

 Method=FFTW_MEASURE

 ELSE

 Method=FFTW_ESTIMATE

 ENDIF

 instr%dir=dir

 IF (dir==r2cFT) THEN

 call sfftw_plan_dft_r2c(instr%plan,size(NVox),NVox,rho,sf,method)

 instr%norm=1.

 ELSEIF (dir==c2rFT) THEN

 call sfftw_plan_dft_c2r(instr%plan,size(InNVox),InNVox,insf,inrho,method)

 instr%norm=product(InNVox)

 ENDIF

 IF (instr%plan==0) CALL StopProgram('Error, cannot initiate the FFT routine.‘)

 END SUBROUTINE MakeFFTPlan

