

Scripting for
Crystallography

and
Automation

Paul Emsley
LMB MRC
Aug 2013

Automation

 Is the use of control systems to optimize
productivity in the production of goods
and services

 We can take that to mean plugging the
munged output of one program into the
the input of another

 Do so a number of times and you've made
a “pipe-line”

My Programming Background
 Early 80s

 C-Shell script for automating CCP4 Amore

 Late 90s I started programming CHART

 (SOLVE using CCP4 Software)
 was not popular but I gained experience

 Mid 2000s:
 HAPPy – “CCP4-blessed” re-write in Python

 Not released, but I gained some experience

 Coot
 Molecular graphics program designed to

work with CCP4 (and other) software

Coot Introduction
 GNU GPL v3
 OpenGL (3D graphics) package for

macromolecular model-building
 i.e. making, adjusting and validating

models of proteins

 617k LoC
 Mostly C++

 heavy use of STL
 scheme, python

 Most highly cited Free Software

Computation in Shell Scripts?

 I often use awk for “one-liners” in shell scripts

 If the awk program gets to be longer than
straightforward, it occurs to me that I'm doing it
wrong and will turn to rewrite in scsh or python

Coot Interfaces

 SHELX Interface
 ins files

 Refmac Interface
 raw parsing of log file

 PISA Interface
 XML file parser

 PRODRG Interface
 mdl files

 Phenix Interface
 xmlrpc

 Mogul Interface
 csv parser

 Wikipedia, Drugbank

 synchronous XML

 PDBe

 asynchronous web
documents

 including JSON

Parsing

 Very little to choose between mmCIF (PDBx)
and XML.

 XML advantage is that it can be done with
scripting

 Parsing of log files for (typically) single values
is easier from log files than XML

 (except for the “PEAKSEARCH” problem)

Inputs and Outputs

 standard in
 standard out

 these can be typically redirected

 use pexpect where needed to automate
interactive programs

 a work-alike of Don Libes “expect”

Inputs and Outputs

program < input-file > log-file 2> errors-file
Data lines
<< eof-marker

or:

program << eof-marker > log-file 2> errors-file
Data lines
<< eof-marker

Bash Variable Substitution

hklin=data.mtz
FP=FP_native
PHI=PHWT

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Passing Parameters

$ bash fft.sh refined.mtz FWT PHWT

Bash Variable Substitution

hklin=data.mtz
FP=FP_native
PHI=PHWT

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Variable Substitution

hklin=$1
FP=$2
PHI=$3

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Conditions

 What happens if I run the previous script
without specifying the phases?

$ bash fft.sh refined.mtz FWT

 Then fft gets run with this input:

LABIN F1=$FP PHI=

 Bad News. Let's test the number of arguments
beforehand

Conditionals

if [$# -ne 3] ; then
 exit
fi

hklin=”$1”
FP=”$2”
PHI=”$3”

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Executable Shell Scripts?

 No.
 It just encourages:
 Long winded command-line usage
 a mismatch between command scripts

and log files
 So...
 Use a script submitter to keep them

consistent

iput=$1
oput=$2

if [! -e “$iput”] ; then
 if [! -e $iput.com] ; then
 echo sub.sh: The command file $iput does not exist.
 exit
 else
 iput=$iput.com
 fi
fi

if [-z "$oput"] ; then
 t1=$(basename "$iput")
 t2="${t1%.*}"
 oput=$t2.log
fi
(time bash $iput > $oput); stat=$?; echo $iput "has finished

with status $stat" &

But but but...

 Shell scripting like this is often not what
you want...

 (not what I want)

 I want to combine process execution with
computation and “non-trivial”
judgement

 And this is better done with a general
purpose language that can also control
subprocesses

 (albeit somewhat less elegantly)

 Python

But but but...

 Shell scripting is what people did before
there was Python

Python (Shell) Scripting

from subprocess import call

def run_mogul(sdf_file_name, mogul_ins_file_name,
mogul_out_file_name):

 f = make_mogul_ins_file(mogul_ins_file_name,
 mogul_out_file_name, sdf_file_name)

 if f:
 call(['mogul', '-ins', mogul_ins_file_name])

Python (Shell) Scripting

def make_mogul_ins_file(mogul_ins_file_name,
mogul_out_file_name, sdf_file_name):

 f = open(mogul_ins_file_name, 'w')
 if f:
 f.write('mogul molecule file ')
 f.write(sdf_file_name)
 f.write('\n')
 f.write('mogul output file ')
 f.write(mogul_out_file_name)
 f.write('\n')
 f.write('mogul output distribution all on\n')
 f.write('bond all\n')
 f.write('angle all\n')
 f.write('torsion all\n')
 f.write('ring all\n')
 return f

Network Communication

 PDB validation services will be available
as XML files

 interpretation is being built into Coot now
 using python's built-in xml.etree

 Asynchronous communication
 the outstandingly difficult task that I have

tackled
 why is it useful?
 why is it hard?

 Don't do it (unless you have to)

Tutorial Info

 We will be using python to get
information from PDBe server in
JavaScript Object Notation

Recommendations

 For Shell scripting
 Scsh is the best (by far :)
 Use sh (bash) not csh

 bash is “Unix” POSIX standard
 no functions
 can't redirect standard error
 can't read from redirected stdin
 also quoting, signals, parsing, evaluation

inelegances
 Python for scripts that are more than

“just” running processes

Recommendations

 Get to know your editor
 to love it, even?
 customize it
 if it doesn't do paren matching and

language-dependent commenting,
choose something else...

Recommendations

 Do not write your own PDB parser
 Do not write your own crystallographic

library
 cctbx and mmdb/clipper are superb
 (and it will take you ~5 years to begin to

match the work therein)

 cctbx:
 much functionality, and available for

scripting

 mmdb/clipper:
 easy to install, not pythonic (yet)

Software Recommendations
 For the unaffiliated

 Core in C++
 Scripting: python via boost.python
 numpy for numerical library
 Doxygen for documentation
 GUI in Qt.

 Coot's architecture (GNU heritage)
 Core in C++
 Scripting in scheme via SWIG
 GNU Scientific Library of numerical libs
 Texinfo for documentation
 GUI in GTK+

Recommendations

 Use Revision Control
 Subversion is the safe option

 consider also bazaar, mercurial, git
 Distributed VCS allow local commits

 why is that good?

 If you have a GUI, you should routinely
watch people using it

 CSHL students since 2007

Take Home Message

 Rapid deployment
 Often gets fixes out to those requesting

them on the same day
 requires:

 revision control
 automated testing
 automated builds

Web Sites

 For programming queries:
stackoverflow.com

“Release Early, Release Often”

 This is ridiculous
 (in our field)

 Should be:
 “Release when it's 'done done', release often”

Thank you

Parallelization Considerations

 On multi-cored hardware
 multiple thread, one process
 paralellize the very inner level

 On cluster
 (multiple processes, single-threaded)
 parallelize the very outer layer

 the batch submission layer

Scripting for Clusters

 It is convenient to have executables, data,
input and output files for cluster jobs in “the
same” location available from a server

 However, this can cause file-server bottlenecks

 Steps need to be taken to reduce this (reducing
convenience)

 cloning the database
 cloning the software installation
 random delay in execution
 use the local file system and copy results

back

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

