
  

Scripting for 
Crystallography

and 
Automation

Paul Emsley
LMB MRC
Aug 2013



  

Automation

 Is the use of control systems to optimize 
productivity in the production of goods 
and services

 We can take that to mean plugging the 
munged output of one program into the 
the input of another

 Do so a number of times and you've made 
a “pipe-line”



  

My Programming Background
 Early 80s

 C-Shell script for automating CCP4 Amore

 Late 90s I started programming CHART

 (SOLVE using CCP4 Software)
 was not popular but I gained experience

 Mid 2000s:
 HAPPy – “CCP4-blessed” re-write in Python

 Not released, but I gained some experience

 Coot
 Molecular graphics program designed to 

work with CCP4 (and other) software



  

Coot Introduction
 GNU GPL v3
 OpenGL (3D graphics) package for 

macromolecular model-building
 i.e. making, adjusting and validating 

models of proteins

 617k LoC
 Mostly C++

 heavy use of STL
 scheme, python

 Most highly cited Free Software



  

Computation in Shell Scripts?

 I often use awk for “one-liners” in shell scripts

 If the awk program gets to be longer than 
straightforward, it occurs to me that I'm doing it 
wrong and will turn to rewrite in scsh or python



  

Coot Interfaces

 SHELX Interface
 ins files

 Refmac Interface
 raw parsing of log file

 PISA Interface
 XML file parser

 PRODRG Interface
 mdl files

 Phenix Interface
 xmlrpc

 Mogul Interface
 csv parser

 Wikipedia, Drugbank

 synchronous XML

 PDBe

 asynchronous web 
documents

 including JSON



  

Parsing

 Very little to choose between mmCIF (PDBx) 
and XML.

 XML advantage is that it can be done with 
scripting 

 Parsing of log files for (typically) single values 
is easier from log files than XML

 (except for the “PEAKSEARCH” problem)



  

Inputs and Outputs

 standard in
 standard out

 these can be typically redirected

 use pexpect where needed to automate 
interactive programs 

 a work-alike of Don Libes “expect”



  

Inputs and Outputs

program < input-file > log-file 2> errors-file
Data lines
<< eof-marker 

or:
 
program << eof-marker > log-file 2> errors-file
Data lines
<< eof-marker 



  

Bash Variable Substitution

hklin=data.mtz
FP=FP_native
PHI=PHWT

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!



  

Passing Parameters

$ bash fft.sh refined.mtz FWT PHWT



  

Bash Variable Substitution

hklin=data.mtz
FP=FP_native
PHI=PHWT

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!



  

Variable Substitution

hklin=$1
FP=$2
PHI=$3

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!



  

Conditions

 What happens if I run the previous script 
without specifying the phases?

$ bash fft.sh refined.mtz FWT

 Then fft gets run with this input:

LABIN F1=$FP PHI= 

 Bad News.  Let's test the number of arguments 
beforehand



  

Conditionals

if [ $# -ne 3 ] ; then
    exit
fi

hklin=”$1”
FP=”$2”
PHI=”$3”

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!



  

Executable Shell Scripts?

 No.
 It just encourages:
 Long winded command-line usage
 a mismatch between command scripts 

and log files
 So...
 Use a script submitter to keep them 

consistent



  

 

iput=$1
oput=$2

if [ ! -e “$iput” ] ; then
   if [ ! -e $iput.com ] ; then
      echo sub.sh: The command file $iput does not exist.
      exit
   else
      iput=$iput.com
   fi
fi

if [ -z "$oput" ] ; then
   t1=$(basename "$iput")
   t2="${t1%.*}"
   oput=$t2.log
fi
(time bash $iput > $oput); stat=$?; echo $iput "has finished 

with status $stat" &



  

But but but...

 Shell scripting like this is often not what 
you want...

 (not what I want)

 I want to combine process execution with 
computation and “non-trivial” 
judgement

 And this is better done with a general 
purpose language that can also control 
subprocesses

 (albeit somewhat less elegantly)

 Python



  

But but but...

 Shell scripting is what people did before 
there was Python



  

Python (Shell) Scripting

from subprocess import call

def run_mogul(sdf_file_name, mogul_ins_file_name, 
mogul_out_file_name):

   f = make_mogul_ins_file(mogul_ins_file_name,                
   mogul_out_file_name, sdf_file_name)

   if f:
      call(['mogul', '-ins', mogul_ins_file_name])



  

Python (Shell) Scripting

def make_mogul_ins_file(mogul_ins_file_name, 
mogul_out_file_name, sdf_file_name):

   f = open(mogul_ins_file_name, 'w')
   if f:
     f.write('mogul molecule file ')
     f.write(sdf_file_name)
     f.write('\n')
     f.write('mogul output   file ')
     f.write(mogul_out_file_name)
     f.write('\n')
     f.write('mogul output distribution all on\n')
     f.write('bond all\n')
     f.write('angle all\n')
     f.write('torsion all\n')
     f.write('ring all\n')
   return f



  

Network Communication

 PDB validation services will be available 
as XML files

 interpretation is being built into Coot now
 using python's built-in xml.etree

 Asynchronous communication
 the outstandingly difficult task that I have 

tackled
 why is it useful?
 why is it hard?

 Don't do it (unless you have to)



  

Tutorial Info

 We will be using python to get 
information from PDBe server in 
JavaScript Object Notation



  

Recommendations

 For Shell scripting
 Scsh is the best (by far :)
 Use sh (bash) not csh

 bash is “Unix” POSIX standard
 no functions
 can't redirect standard error
 can't read from redirected stdin
 also quoting, signals, parsing, evaluation 

inelegances
 Python for scripts that are more than 

“just” running processes



  

Recommendations

 Get to know your editor
 to love it, even?
 customize it
 if it doesn't do paren matching and 

language-dependent commenting, 
choose something else...



  

Recommendations

 Do not write your own PDB parser
 Do not write your own crystallographic 

library
 cctbx and mmdb/clipper are superb
 (and it will take you ~5 years to begin to 

match the work therein)

 cctbx:
 much functionality, and available for 

scripting

 mmdb/clipper: 
 easy to install, not pythonic (yet)



  

Software Recommendations
 For the unaffiliated 

 Core in C++
 Scripting: python via boost.python
 numpy for numerical library
 Doxygen for documentation
 GUI in Qt.

 Coot's architecture (GNU heritage)
 Core in C++
 Scripting in scheme via SWIG
 GNU Scientific Library of numerical libs
 Texinfo for documentation
 GUI in GTK+



  

Recommendations

 Use Revision Control
 Subversion is the safe option

 consider also bazaar, mercurial, git
 Distributed VCS allow local commits

 why is that good?

 If you have a GUI, you should routinely 
watch people using it

 CSHL students since 2007



  

Take Home Message

 Rapid deployment
 Often gets fixes out to those requesting 

them on the same day
 requires: 

 revision control
 automated testing 
 automated builds 



  

Web Sites

 For programming queries: 
stackoverflow.com



  

“Release Early, Release Often”

 This is ridiculous
 (in our field)

 Should be:
 “Release when it's 'done done', release often”



  

Thank you



  

Parallelization Considerations

 On multi-cored hardware
 multiple thread, one process 
 paralellize the very inner level

 On cluster 
 (multiple processes, single-threaded)
 parallelize the very outer layer

 the batch submission layer



  

Scripting for Clusters

 It is convenient to have executables, data, 
input and output files for cluster jobs in “the 
same” location available from a server

 However, this can cause file-server bottlenecks

 Steps need to be taken to reduce this (reducing 
convenience)

 cloning the database
 cloning the software installation
 random delay in execution
 use the local file system and copy results 

back
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