

Scripting for
Crystallography

and
Automation

Paul Emsley
LMB MRC
Aug 2013

Automation

 Is the use of control systems to optimize
productivity in the production of goods
and services

 We can take that to mean plugging the
munged output of one program into the
the input of another

 Do so a number of times and you've made
a “pipe-line”

My Programming Background
 Early 80s

 C-Shell script for automating CCP4 Amore

 Late 90s I started programming CHART

 (SOLVE using CCP4 Software)
 was not popular but I gained experience

 Mid 2000s:
 HAPPy – “CCP4-blessed” re-write in Python

 Not released, but I gained some experience

 Coot
 Molecular graphics program designed to

work with CCP4 (and other) software

Coot Introduction
 GNU GPL v3
 OpenGL (3D graphics) package for

macromolecular model-building
 i.e. making, adjusting and validating

models of proteins

 617k LoC
 Mostly C++

 heavy use of STL
 scheme, python

 Most highly cited Free Software

Computation in Shell Scripts?

 I often use awk for “one-liners” in shell scripts

 If the awk program gets to be longer than
straightforward, it occurs to me that I'm doing it
wrong and will turn to rewrite in scsh or python

Coot Interfaces

 SHELX Interface
 ins files

 Refmac Interface
 raw parsing of log file

 PISA Interface
 XML file parser

 PRODRG Interface
 mdl files

 Phenix Interface
 xmlrpc

 Mogul Interface
 csv parser

 Wikipedia, Drugbank

 synchronous XML

 PDBe

 asynchronous web
documents

 including JSON

Parsing

 Very little to choose between mmCIF (PDBx)
and XML.

 XML advantage is that it can be done with
scripting

 Parsing of log files for (typically) single values
is easier from log files than XML

 (except for the “PEAKSEARCH” problem)

Inputs and Outputs

 standard in
 standard out

 these can be typically redirected

 use pexpect where needed to automate
interactive programs

 a work-alike of Don Libes “expect”

Inputs and Outputs

program < input-file > log-file 2> errors-file
Data lines
<< eof-marker

or:

program << eof-marker > log-file 2> errors-file
Data lines
<< eof-marker

Bash Variable Substitution

hklin=data.mtz
FP=FP_native
PHI=PHWT

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Passing Parameters

$ bash fft.sh refined.mtz FWT PHWT

Bash Variable Substitution

hklin=data.mtz
FP=FP_native
PHI=PHWT

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Variable Substitution

hklin=$1
FP=$2
PHI=$3

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Conditions

 What happens if I run the previous script
without specifying the phases?

$ bash fft.sh refined.mtz FWT

 Then fft gets run with this input:

LABIN F1=$FP PHI=

 Bad News. Let's test the number of arguments
beforehand

Conditionals

if [$# -ne 3] ; then
 exit
fi

hklin=”$1”
FP=”$2”
PHI=”$3”

fft HKLIN $hklin << ! > fft.log
LABIN F1=$FP PHI=$PHI
!

Executable Shell Scripts?

 No.
 It just encourages:
 Long winded command-line usage
 a mismatch between command scripts

and log files
 So...
 Use a script submitter to keep them

consistent

iput=$1
oput=$2

if [! -e “$iput”] ; then
 if [! -e $iput.com] ; then
 echo sub.sh: The command file $iput does not exist.
 exit
 else
 iput=$iput.com
 fi
fi

if [-z "$oput"] ; then
 t1=$(basename "$iput")
 t2="${t1%.*}"
 oput=$t2.log
fi
(time bash $iput > $oput); stat=$?; echo $iput "has finished

with status $stat" &

But but but...

 Shell scripting like this is often not what
you want...

 (not what I want)

 I want to combine process execution with
computation and “non-trivial”
judgement

 And this is better done with a general
purpose language that can also control
subprocesses

 (albeit somewhat less elegantly)

 Python

But but but...

 Shell scripting is what people did before
there was Python

Python (Shell) Scripting

from subprocess import call

def run_mogul(sdf_file_name, mogul_ins_file_name,
mogul_out_file_name):

 f = make_mogul_ins_file(mogul_ins_file_name,
 mogul_out_file_name, sdf_file_name)

 if f:
 call(['mogul', '-ins', mogul_ins_file_name])

Python (Shell) Scripting

def make_mogul_ins_file(mogul_ins_file_name,
mogul_out_file_name, sdf_file_name):

 f = open(mogul_ins_file_name, 'w')
 if f:
 f.write('mogul molecule file ')
 f.write(sdf_file_name)
 f.write('\n')
 f.write('mogul output file ')
 f.write(mogul_out_file_name)
 f.write('\n')
 f.write('mogul output distribution all on\n')
 f.write('bond all\n')
 f.write('angle all\n')
 f.write('torsion all\n')
 f.write('ring all\n')
 return f

Network Communication

 PDB validation services will be available
as XML files

 interpretation is being built into Coot now
 using python's built-in xml.etree

 Asynchronous communication
 the outstandingly difficult task that I have

tackled
 why is it useful?
 why is it hard?

 Don't do it (unless you have to)

Tutorial Info

 We will be using python to get
information from PDBe server in
JavaScript Object Notation

Recommendations

 For Shell scripting
 Scsh is the best (by far :)
 Use sh (bash) not csh

 bash is “Unix” POSIX standard
 no functions
 can't redirect standard error
 can't read from redirected stdin
 also quoting, signals, parsing, evaluation

inelegances
 Python for scripts that are more than

“just” running processes

Recommendations

 Get to know your editor
 to love it, even?
 customize it
 if it doesn't do paren matching and

language-dependent commenting,
choose something else...

Recommendations

 Do not write your own PDB parser
 Do not write your own crystallographic

library
 cctbx and mmdb/clipper are superb
 (and it will take you ~5 years to begin to

match the work therein)

 cctbx:
 much functionality, and available for

scripting

 mmdb/clipper:
 easy to install, not pythonic (yet)

Software Recommendations
 For the unaffiliated

 Core in C++
 Scripting: python via boost.python
 numpy for numerical library
 Doxygen for documentation
 GUI in Qt.

 Coot's architecture (GNU heritage)
 Core in C++
 Scripting in scheme via SWIG
 GNU Scientific Library of numerical libs
 Texinfo for documentation
 GUI in GTK+

Recommendations

 Use Revision Control
 Subversion is the safe option

 consider also bazaar, mercurial, git
 Distributed VCS allow local commits

 why is that good?

 If you have a GUI, you should routinely
watch people using it

 CSHL students since 2007

Take Home Message

 Rapid deployment
 Often gets fixes out to those requesting

them on the same day
 requires:

 revision control
 automated testing
 automated builds

Web Sites

 For programming queries:
stackoverflow.com

“Release Early, Release Often”

 This is ridiculous
 (in our field)

 Should be:
 “Release when it's 'done done', release often”

Thank you

Parallelization Considerations

 On multi-cored hardware
 multiple thread, one process
 paralellize the very inner level

 On cluster
 (multiple processes, single-threaded)
 parallelize the very outer layer

 the batch submission layer

Scripting for Clusters

 It is convenient to have executables, data,
input and output files for cluster jobs in “the
same” location available from a server

 However, this can cause file-server bottlenecks

 Steps need to be taken to reduce this (reducing
convenience)

 cloning the database
 cloning the software installation
 random delay in execution
 use the local file system and copy results

back

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

