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Principle of maximum likelihood 

•  Best model is most consistent with data 
•  Measure consistency by probabilities 
•  Optimise model by adjusting parameters in 

probability distribution 

•  Crystallographic likelihood is based on probability 
distributions of structure factors 
•  univariate for maps, molecular replacement, refinement 
•  multivariate for experimental phasing and other advanced 

applications 



Wilson distribution 

Structure factors with random atoms 

•  Assume atoms randomly scattered relative to 
Bragg planes 

•  Random walk in complex plane 



The Central Limit Theorem 

•  Probability distribution of a sum of independent 
random variables tends to be Gaussian 
•  regardless of distributions of variables in sum 

•  Conditions: 
•  sufficient number of independent random variables 
•  none may dominate the distribution  

•  Centroid (mean) of Gaussian is sum of centroids 
•  Variance of Gaussian is sum of variances 



Wilson distribution for space group P1 

•  Apply central limit theorem to real and 
imaginary parts of structure factor separately 
•  sums of real and imaginary atomic contributions 



Derivation of Wilson distribution: 
centroids 
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Derivation of Wilson distribution: 
variances 
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Derivation of Wilson distribution: 
joint distribution of A and B 
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Alternative derivation of Wilson 
distribution 

•  Complex normal distribution 
•  Gaussian for complex numbers 
•  joint distribution of real and imaginary parts 
•  Central Limit Theorem also applies 
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Sim distribution: 
known and unknown atoms 
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Sim distribution for amplitudes 

•  Likelihood function is the probability of the 
observations 
•  but only the intensity (or amplitude) is measured 
•  phase component has to be eliminated 

•  Change variables from real and imaginary to 
amplitude and phase 

•  Integrate over all possible values of (unknown) 
phase 



Sim distribution for amplitudes 
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Effect of atomic errors (or differences) 

•  Atomic errors give “boomerang” distribution of 
possible atomic contributions 

•  Portion of atomic contribution is correct  

f

Bragg Planes 
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Effect of atomic errors (or differences) 

•  Work out centroid and variance for the 
contribution from a single atom 
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Structure factor with coordinate errors 

•  Luzzati (1952) 
•  all atoms subject to same errors 

•  Complex normal distribution 

DFC 
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Srinivasan and colleagues: σΑ 

•  Effects of errors and incompleteness are 
equivalent in terms of E-values 
•  variance of error in E-value is 1-σA

2 

•  conservation of scattering power 
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Advanced applications of likelihood 

•  Refinement and MR involve pairs of structure 
factors with one observation: FO and FC 

•  Other applications involve larger collections 
•  MIR: FP, FPH1, H1, FPH2, H2,  … 
•  SAD: F+, F-, H+, H- 

•  Need joint distributions of collections of 
structure factors 



Likelihood for more structure factors 

•  σΑ can be interpreted as complex covariance 
between normalised structure factors 

•  New applications based on multivariate complex 
normal distribution 
•  difficulty is integrating out more than one phase! 
•  can always isolate one phase by factoring probability 

distribution 
•  see paper on SAD likelihood target 



The normal (Gaussian) distribution 

•  Gaussian distribution for one variable 

•  Multivariate normal distribution 
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Multivariate complex  
normal distribution 

•  Complex normal 

•  Multivariate complex normal distribution 
•  Hermitian covariance matrix 
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•  Start with large joint distribution  

•  Fix known or model (y) terms 
•  partition covariance matrix 

•  update covariances and  
expected values for remaining  
variables 

 

Deriving conditional  
Gaussian probability 
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Re-deriving Srinivasan distribution 

•  Start from joint distribution of EO and EC 
•  Fix EC, manipulate covariance matrix 

•  turn joint distribution into conditional 
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Molecular replacement  
with an ensemble 

•  Start from joint distribution of structure factors, 
including true and all models 

•  Conditional distribution turns collection of 
models into a statistically-weighted ensemble-
average structure factor 
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SAD: probabilities for Friedel pair 

•  Start from joint distribution of true and 
calculated structure factors 

•  Use standard manipulations to get  
conditional probability: 
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Dealing with translational NCS 

•  Diffraction from copies in 
different orientations is 
uncorrelated 
•  zero covariances 



Dealing with translational NCS 

•  Diffraction from copies in 
different orientations is 
uncorrelated 
•  zero covariances 

•  Diffraction from copies in the 
same orientation is correlated 
•  covariances are modulated 

•  Add covariances to get 
expected intensity 



Effect of rotation on translational NCS 

•  Rotation parallel to diffraction 
vector has no effect 



Effect of rotation on translational NCS 

•  Rotation parallel to diffraction 
vector has no effect 

•  Rotation around other axes 
reduces correlation 

•  Random coordinate differences 
between copies reduce 
correlation 



Accounting for translational NCS 

•  Model effect of translation combined with small 
rotation and random differences between copies 

•  Also model vs. data  
covariances 

Hyp-1: 
Sliwiak, Jaskolski, 
Dauter, McCoy, 
Read  
(unpublished) 



Other potential applications 

•  SIR likelihood target 
•  SIR phasing 
•  joint refinement of native and liganded structures 

•  Fast translation function for SAD target 
•  Understanding of solvent flattening 
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