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Principle of maximum likelihood

« Best model is most consistent with data
« Measure consistency by probabilities

« Optimise model by adjusting parameters in
probability distribution

« Crystallographic likelihood is based on probability
distributions of structure factors
. univariate for maps, molecular replacement, refinement

- multivariate for experimental phasing and other advanced
applications




Structure factors with random atoms

« Assume atoms randomly scattered relative to

Bragg planes . .
« Random walk in complex plane | °

Wilson distribution




The Central Limit Theorem

 Probability distribution of a sum of independent
random variables tends to be Gaussian

. regardless of distributions of variables in sum

« Conditions:

. sufficient number of independent random variables
- none may dominate the distribution

« Centroid (mean) of Gaussian is sum of centroids
« Variance of Gaussian is sum of variances




Wilson distribution for space group P1

« Apply central limit theorem to real and
imaginary parts of structure factor separately

. sums of real and imaginary atomic contributions




Derivation of Wilson distribution:
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Derivation of Wilson distribution:
variances
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Derivation of Wilson distribution:
joint distribution of A and B
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Alternative derivation of Wilson
distribution

« Complex normal distribution
- Gaussian for complex numbers
. joint distribution of real and imaginary parts
 Central Limit Theorem also applies @
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Sim distribution:
known and unknown atoms
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Sim distribution for amplitudes

« Likelihood function is the probability of the
observations
- but only the intensity (or amplitude) is measured
. phase component has to be eliminated

« Change variables from real and imaginary to
amplitude and phase

« Integrate over all possible values of (unknown)
phase




Sim distribution for amplitudes
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Effect of atomic errors (or differences)

« Atomic errors give “boomerang” distribution of
possible atomic contributions

« Portion of atomic contribution is correct

.
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Effect of atomic errors (or differences)

« Work out centroid and variance for the
contribution from a single atom

(fyexp(2min-(x, +8,)))=(exp(27ih-6,)) f,exp(27ih-x)

=d, f,exp(27ih-x,)
=d;f, /<df
<fjexp(2mh-5j)—djfj2>:ff(1-d§) \/




Structure factor with coordinate errors

o Luzzati (1952)
. all atoms subject to same errors

« Complex normal distribution




Srinivasan and colleagues: o,

« Effects of errors and incompleteness are
equivalent in terms of E-values
. variance of error in E-value is 1-0,°

. conservation of scattering power -
C




Advanced applications of likelihood

« Refinement and MR involve pairs of structure
factors with one observation: F, and F_

« Other applications involve larger collections
. MIR: F,, Fppy, Hy, Fprpo, H, ..
. SAD: F*, F-, H", H-

« Need joint distributions of collections of
structure factors




Likelihood for more structure factors

- 0, can be interpreted as complex covariance
between normalised structure factors

« New applications based on multivariate complex
normal distribution
. difficulty is integrating out more than one phase!

. can always isolate one phase by factoring probability
distribution
. see paper on SAD likelihood target




The normal (Gaussian) distribution

o Gaussian distribution for one variable
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o Multivariate normal distribution

p(x)= |27r12|1/2 exp[—%(x —~ <X>)T 2 (x— <X>):| , Where

elements of = given by 0, = <(X,- — <xi>)(x i <x ,>)>




Multivariate complex
normal distribution

« Complex normal

P(Z1) = éeXp -_ ‘Zl _éZ1>2 | tm .
=éexp -‘(Zl ‘<Z1>)*2_1(Z1 ‘<Z1>)] “

. Multivariate complex normal distribution

« Hermitian covariance matrix

1 H
p(z)=@exp[—(z—<z>) )Y (z—<z>)] , where

elements of X given by 6, = <(Zi - <Z,->)(Z -— <Z,>)*>
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Deriving conditional
Gaussian probability

« Start with large joint distribution
p(xl,xz,...,xm,yl,yz,...yn)

« Fix known or model (y) terms
« partition covgriance matrix - -

data—data_ | data—model |_| Zu o
data —model | model —model X,
. update covariances and S .
expected values for remaining | (x,)
variables 0
1 : =22,
Z IR U DTN N Y <xm>




Re-deriving Srinivasan distribution

- Start from joint distribution of E, and E.

 Fix E., manipulate covariance matrix
. turn joint distribution into conditional




Molecular replacement
with an ensemble

« Start from joint distribution of structure factors,
including true and all models

« Conditional distribution turns collection of
models into a statistically-weighted ensemble-
average structure factor

r=| .7




SAD: probabilities for Friedel pair

o Start from joint distribution of true and
calculated structure factors Py

v
- Use standard manipulations to get - /
conditional probability:

p(FJ,F&,H*,H‘)%p(FS,F&;H*,H‘)

_ >, (FF,) (FH") (FH) _
(FF,) =, (FH) (F'H)
(F; H") (F,H") %, (HH)

(BH) (RHT) (HH) 3,




Dealing with translational NCS

« Diffraction from copies in
different orientations is
uncorrelated

- ZEero covariances




Dealing with translational NCS

« Diffraction from copies in NO
different orientations is &g )
uncorrelated @t
. Zero covariances AN

o Diffraction from copies in the
same orientation is correlated
. covariances are modulated @”?d "

« Add covariances to get
expected intensity




Effect of rotation on translational NCS

« Rotation parallel to diffraction N
vector has no effect




Effect of rotation on translational NCS

« Rotation parallel to diffraction

vector has no effect ®a )
 Rotation around other axes @gys”
reduces correlation SO

« Random coordinate differences
between copies reduce
correlation




Accounting for translational NCS

« Model effect of translation combined with small
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rotation and random differences between copies

o Also model vs. data
covariances
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Other potential applications

« SIR likelihood target
. SIR phasing
- joint refinement of native and liganded structures

« Fast translation function for SAD target
« Understanding of solvent flattening
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