
PLATON, AN OVERVIEW

Ton Spek National Single Crystal Service Facility, Utrecht University, The Netherlands.

Platon Workshop Chicago, 24-July-2010

What is PLATON About

- PLATON is a collection of tools for single crystal structure analysis bundled within a single SHELX and CIF compatible program.
- The tools are either unique to the program (e.g. Validation) or adapted and extended versions of existing tools (e.g. ORTEP).
- The program was developed over of period of over 30 years in the context of the needs of our National Single Crystal Service Facility in the Netherlands.

DESIGN HISTORY

- PLATON started out in 1980 as a program for the automatic generation of an extensive molecular geometry analysis report to be given to the clients of our service. (The CALC ALL mode)
- Soon molecular graphics functionality was added (e.g. PLUTON, ORTEP)
- Over time many other tools were included, many of which also require the reflection data (e.g. SQUEEZE).

DESIGN FEATURES

- As hardware independent as possible
- Limited dependence on external libraries
- Single routine for all graphics calls
- Single routine for all symmetry handling
- Sharing of the numerical routines by the various tools
- Single Fortran source, simple compilation
- Small C routine for interface to X11 graphics
- Hardcopy standards: PostScript (and HPGL)

PLATON USAGE

- Today, the PLATON functionality is most widely used in its validation incarnation as part of the IUCr checkCIF facility.
- Tools are available in PLATON to analyze and address/solve many of the issues that are reported in need of attention.
- Current Platforms:

UNIX/LINUX, MAC-OSX, MS-WINDOWS

PLATON Organization

- The program is invoked with the file(s) to work with (UNIX: platon name.cif)
- The tools available in PLATON are listed as clickable objects on the opening menu
- Main menu and tool options are clickable in submenu's.
- Input can be either in a keyboard entry area or by clicking
- Frequently used tools can also be invoked with command line options (e.g. platon –U name.cif)

0		0	0
	2	0	0

X P.L.A.T.O.N

A Multipurpose Crystallographic Tool

(C) 1980-2010 A.L.Spek - 40M-Version: 80710

				r ar en cheses							
GRAPHICS GEOM-CALC VOIDS FLIP SYMMETF			MISC-TOOLS	Label-Alias							
PLUTONauto Calc All Calc Solv ADDSYM	MULscanABS	Validation	SYSTEM-S	R/S-Determ							
	EQL ABSPstScan	ASYM-VIEW	FCF2HKL	Norm-H-bond							
NewmanPlot Calc Inter SQUEEZE ADDSYM-	EXT ABSTompa	FCF-Valld	Expand2P1	NoSymm							
Ring-Plots Calc Coord CALC-FCF ADDSYM-	PLT ABSGauss	DifFourier	FCF-Gener	NoDisorder							
Plane-Plot Calc Metal Contour-SQ ADDSYM-	SHX ABSXtal	ANALofVAR	HKL-Gener	LstARU RCel							
Polyhedra Calc Geom SOLV F3D NEWSYM	ABSSphere	ByvoetPalr	HKL-Transf	LstCellSymm							
ContourDif Calc Hoond SOLV PLOT NONSYM	SHXABS	AŜYM-EXPCT	EXOR-RES	ListAtoms							
Contour-FoCalc TMA CavityPlot LePage		ASYM-Valld	ANIS-RES	ListBonds							
AutoMolFitL.SPLANE DelRed		SupplMater	Rename-RES	LstFlagRadi							
HKL2Powder DihedAngle MOLSYM		EXPECT-HKL	Auto-Renum								
SimPowderP AngleLines FLIP MENU SPGRfrom	mEX	CSD-CELL	SPF -eld	MinQPeakHgt							
RadDistFun AngLspllin FLIP SHOW ASYM		CSD-QUEST	SHELXL-res								
Patterson CremerPopl FLIP PATT ASYMave	~FR	StructTldy		Q-Peak-Incl							
BondValenc FLIPPER 25 LePageT		StrainAnal	PDB -pdb	KeyInstruct							
PLUTONativ HFIX - RES STRUCTURE? TwinRot	Mat Xtal Hablt	locCIF-acc	CIF2SHELXL	Prev Next							
Xtal Data (CIF) vitac.clf-Set 1	(1): vita	c		SAVE-InstrS							
Refl Data (SHELXL) vitac.fcf [NO-DIRC] (1): vita	C		ENTRY-LIST							
http://www.crust.chem.uu.pl/spek/pl.gtop/PLATON-MANUAL.pdf Browser - HELP											
http://www.cryst.chem.uu.nl/spek/platon/PLATON-MANUAL.pdf	DIOW	361		Reset End							
INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICK	S)			E×it							

LATON

OptionMenus

10

MenuActive

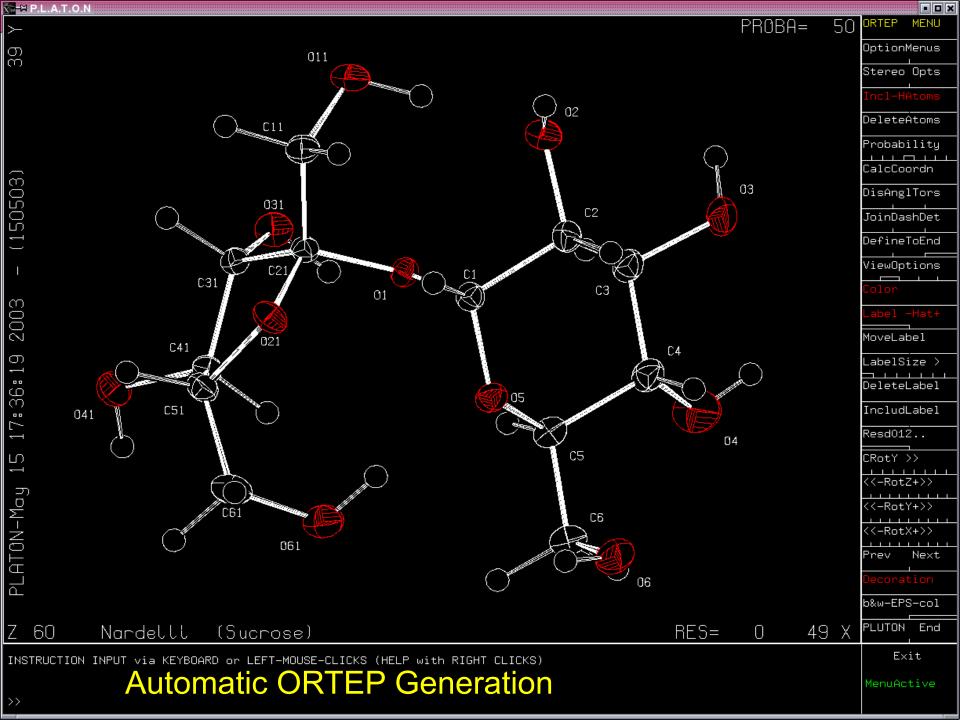
The Geometry Tool

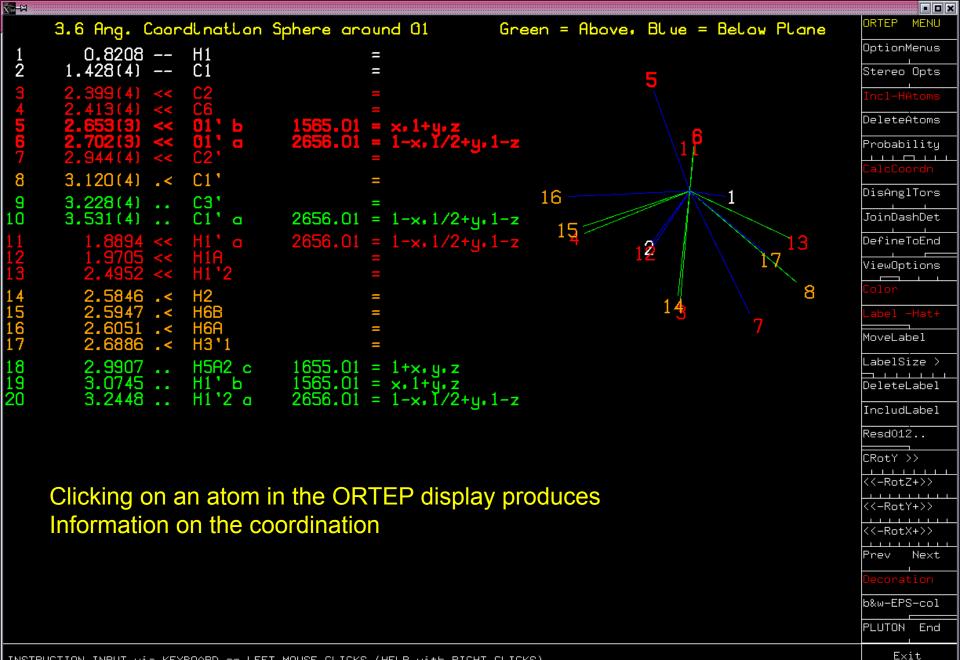
- Extensive Output Listing:
- CALC INTRA bonds, angles, torsion angles, ring, planes, Cremer and Pople puckering analysis, TLS Rigid body analysis, R/S assignments
- CALC INTER Short contacts, H-bonds, networks, pi-pi interactions
- CALC Coordination Berry pseudorotation path

P.L.A.T.O.N						
6-Membered Ring (2)	0(5)<	C(1)<	C(2)<	C(3)<	C(4)<	C (5)<
	spЗ	sp3	sp3	spЗ	sp3	врЗ
Dev. (Ang)	0.1976(13)	-0.2107(9)	0.2394(12) -	0.2550(12)	0.2418(12) -	-0.2131(12)
Cs(I)-Asym-Par (Deg)	0.21(9)	0.95(9)	1.00(9)	0.21(9)	0.95(9)	1.00(9)
C2(I)-Asym-Par (Deg)	110.75(9)	110.75(9)	110.75(9)	110.75(9)	110.75(9)	110.75(9)
Ring Bond Angle(Deg)	115.96(9)	110.84(7)	111.02(7)	108.13(9)	110.82(10)	110.66(9)
Tons(I-J) (Deg)	-54.91(1	12) 54.990	11) -56.03(1	1) 56.27(1	1) -54.87()	12) 55.16(12)
Cs(I-J)-Asym-Par (Deg	g) 110.53(1	12) 111.19()	12) 110.52(1	2) 110.53(1	2) 111.19()	12) 110.52(12)
C2(I-J)-Asym-Par (Deg	g) 0.83(1	12) 1.120	12) 0.91(1	1) 0.83(1	2) 1.12()	12) 0.91(11)
Rlng Bond Distance (Ang	g) 1.4108(1	14) 1.5346()	13) 1.5198(1)	8) 1.5257(1	5) 1.5258()	17) 1.4386(19)
Welghted Average Ring B Welghted Average Abs. T			-			
Q(2) = 0.0498(12) Q(3) = 0.5542(12)	0	2) = 182	.8(13) Deg			
Puckerlng Amplitude (Q)	= 0.5565	5(12) Ang, The	eta = 5.	12(12) Deg,	Phl = 18	82.8(13) Deg

Example of the puckering analysis of a six-member ring

Ring Puckering Tool

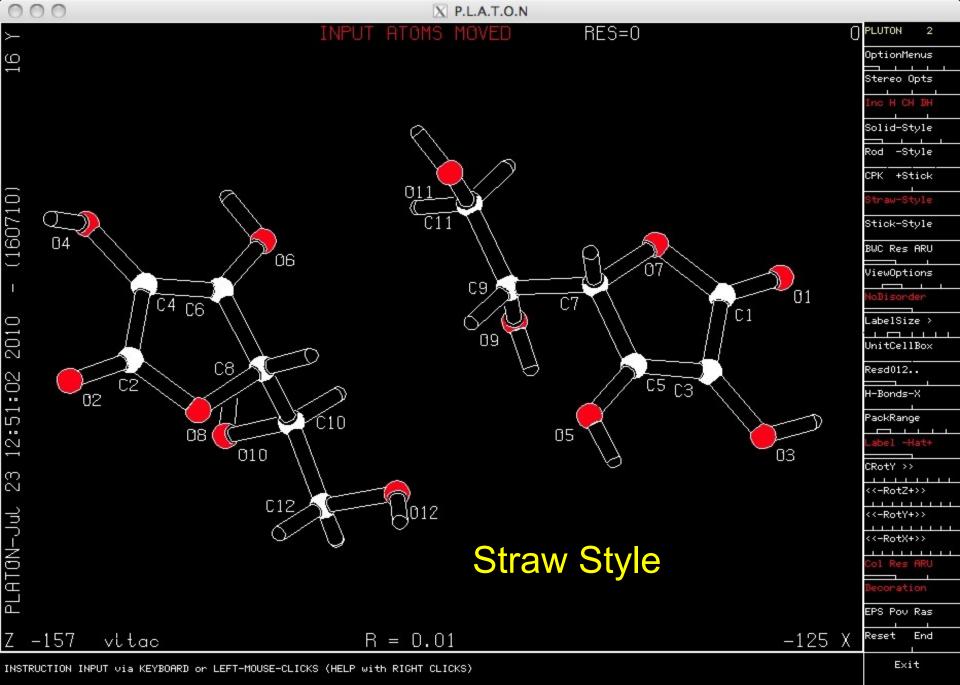

x → P.L.A.T.O.N						• • ×
Donor HAcceptor	C ARU 1	0 – H	НА	DA D	- HA	PLATON MENU
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[1556.01] [2556.01] [1565.01] [1565.01] [2656.01] [2646.01] [2555.01] [2555.01] [1554.01] [2646.01] [2556.01]	0.97 0.96 0.91 0.91 0.91 0.91 0.96 0.97 0.97 0.98 0.97 1.10	1.89 1.91 2.53 2.31 2.54 1.92 1.85 1.91 1.76 1.89 2.27 2.45	2.8548 2.8618 2.8793 2.8375 3.3724 2.8483 2.7808 2.8640 2.7156 2.8498 3.3473 3.5152	170 173 103 117 152 163 159 168 165 167 166 162	OptionMenus NoMove NoDisorder Organic Round Parentheses Label-Alias R/S-Determ NoSubCell
$\begin{array}{ccccc} C(11) &H(12) &0(6) \\ C(31) &H(31) &0(2) \\ C(41) &H(41) &0(61) \\ C(6) &H(61) &0(61) \\ C(61) &H(62) &0(6) \\ C(61) &H(611) &0(4) \end{array}$	[2646.01] [2546.01] [] [2645.01] [2645.01] [1545.01]	1.10 1.10 1.09 1.09 1.09	2.44 2.41 2.47 2.51 2.51 2.56	3.4674 3.4597 2.9363 3.3107 3.2203 3.3058	157 159 104 130 122 125	Norm-H-bond Join-Expand LstARU RCel LstCellSymm ListAtoms
[1556.] = x.y.1+z [1565.] = x.1+y.z [1545.] = x1+y.z [2645.] = $1-x1/2+yz$	[2646.] =	x, 1/2+y, 1-z 1-x, -1/2+y, 1-z -x, 1/2+y, -z	[254	$\begin{array}{l} 56. & 1 & = 1 - \mathbf{x} \cdot 1 / 3 \\ 56. & 1 & = - \mathbf{x} \cdot - 1 / 3 \\ 54. & 1 & = \mathbf{x} \cdot \mathbf{y} \cdot - 1 / 3 \\ 54. & 1 & = \mathbf{x} \cdot \mathbf{y} \cdot - 1 / 3 \\ 54. & 1 & = \mathbf{x} \cdot \mathbf{y} \cdot - 1 / 3 \\ 54. & 1 & = \mathbf{x} \cdot \mathbf{y} \cdot - 1 / 3 \\ 56. & 1 & 1 & 1 \\ 56. & 1 & 1 \\ 56. & 1 & 1 & 1 \\ 56. & 1 & 1 \\ 56. & 1 & 1 \\ 56. & 1 & 1 \\ 56. & 1 & 1 \\ 56. & 1 & 1 \\ 56. & $	2+y,1−z	ListBonds LstFlagRadi X-LineWidth Reverse-B&W Q-Peak-Incl
Hydr	ogen Bo	ond Table	e Tool		Nardelll	EPS HGL TEK NoSymm Prev Next SAVE-InstrS ENTRY-LIST Reset End
INSTRUCTION INPUT via KEYBOARD or LE	FT-MOUSE-CLICKS (HE	LP with RIGHT CLICKS	;)			Exit

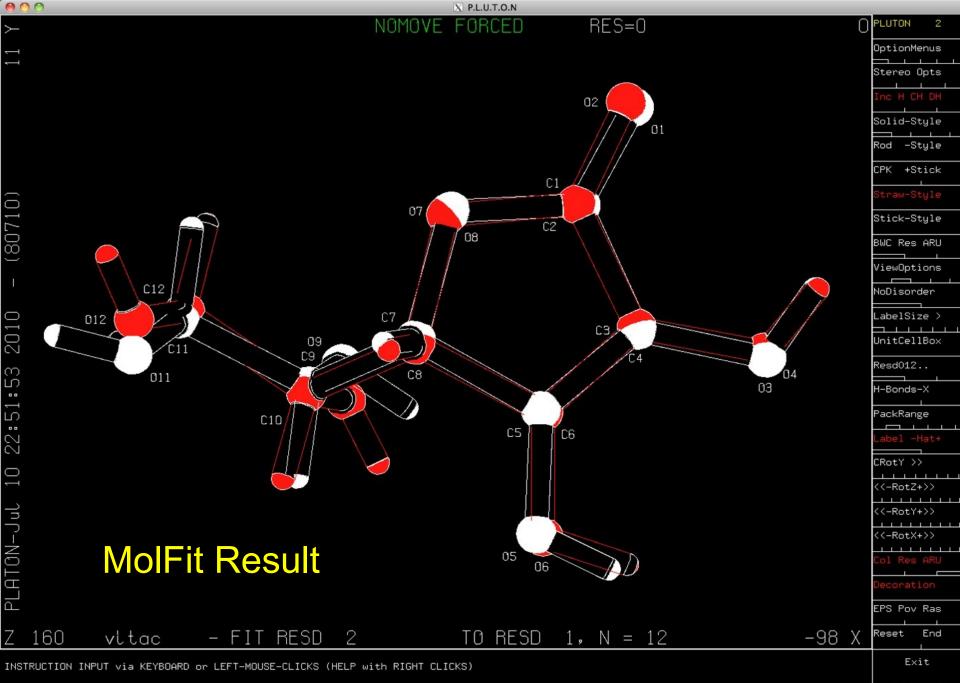

Classic Hydrogen Bonds Found (See Listing for Details) >> Hit RETURN to Continue

MenuActive

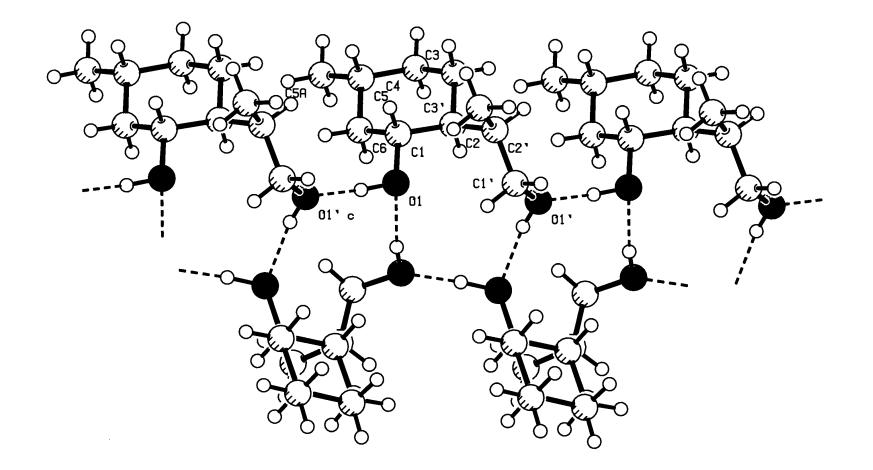
The ORTEP Tool

- Automatic Display of Molecular Geometry and Displacement Parameters
- Interactive tool for least squares plane, angle between planes calculations
- Interactive molfit options
- Interactive tool to investigate the environment (coordination) of an atom

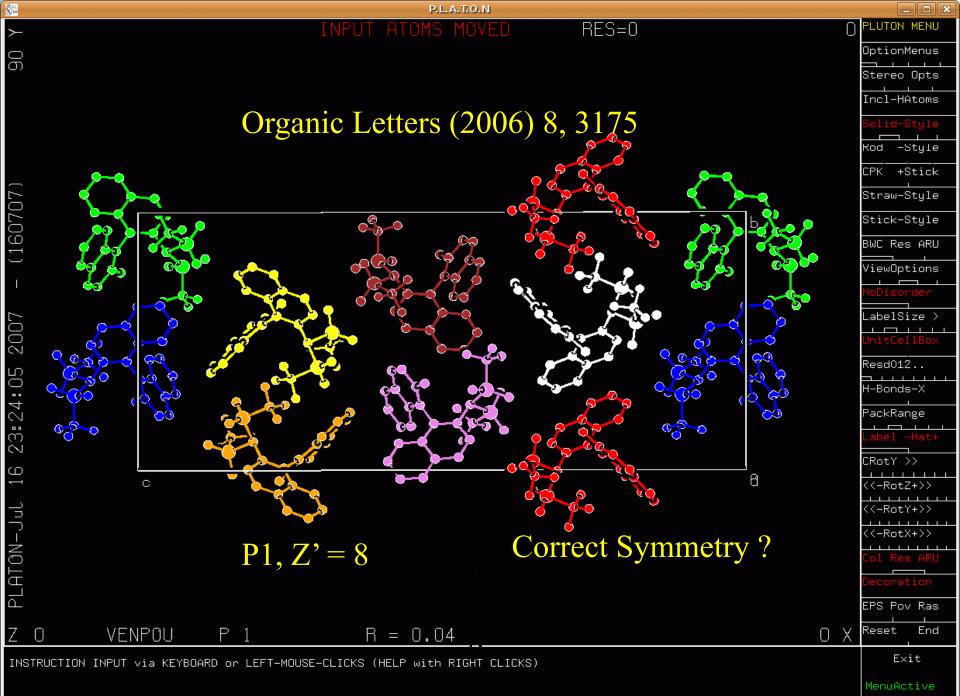



INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)

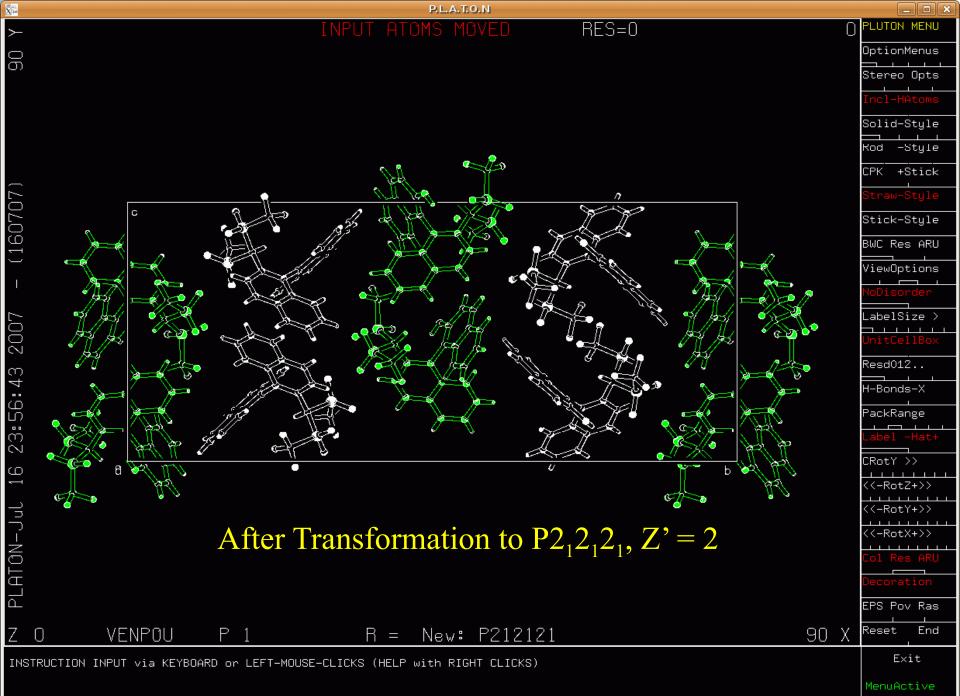
The PLUTON Tool


- PLUTO style ball-and-stick and CPK plots
- Packing plots
- Display of Hydrogen bond networks
- Interactive renaming of atom labels
- Display of molfit results

MenuActive

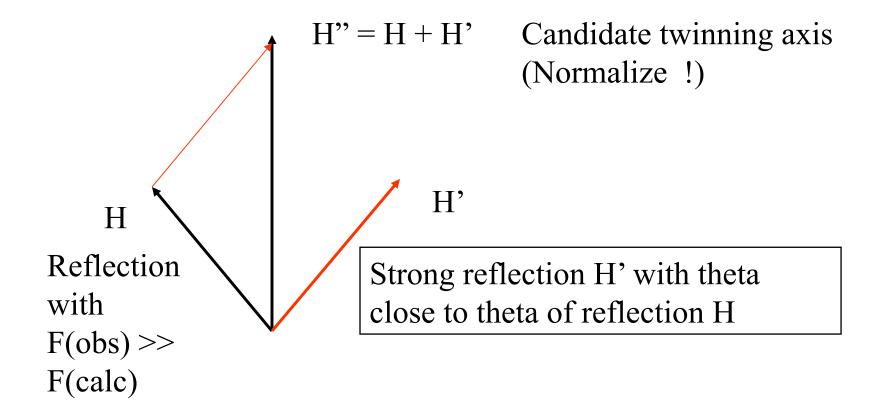


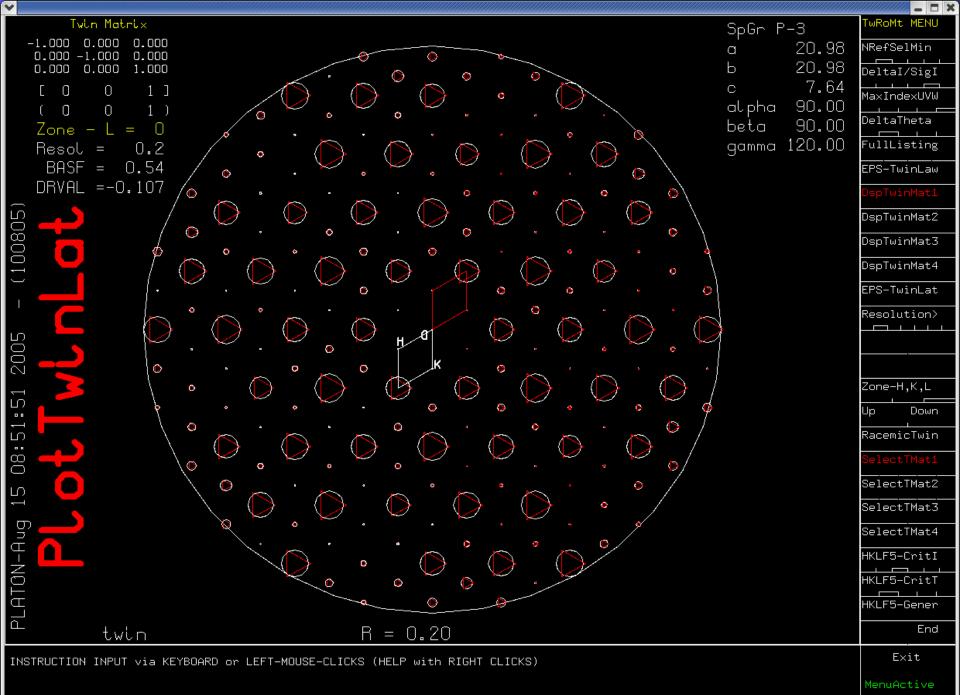
Hydrogen Bonding Network


The ADDSYM Tool

- Automatic search for (missed) higher symmetry in a crystal structure
- Creation of a RES file to continue refinement in the higher symmetry
- An extended implementation of the MISSYM algorithm by Yvon LePage.
- Part of IUCr CheckCIF

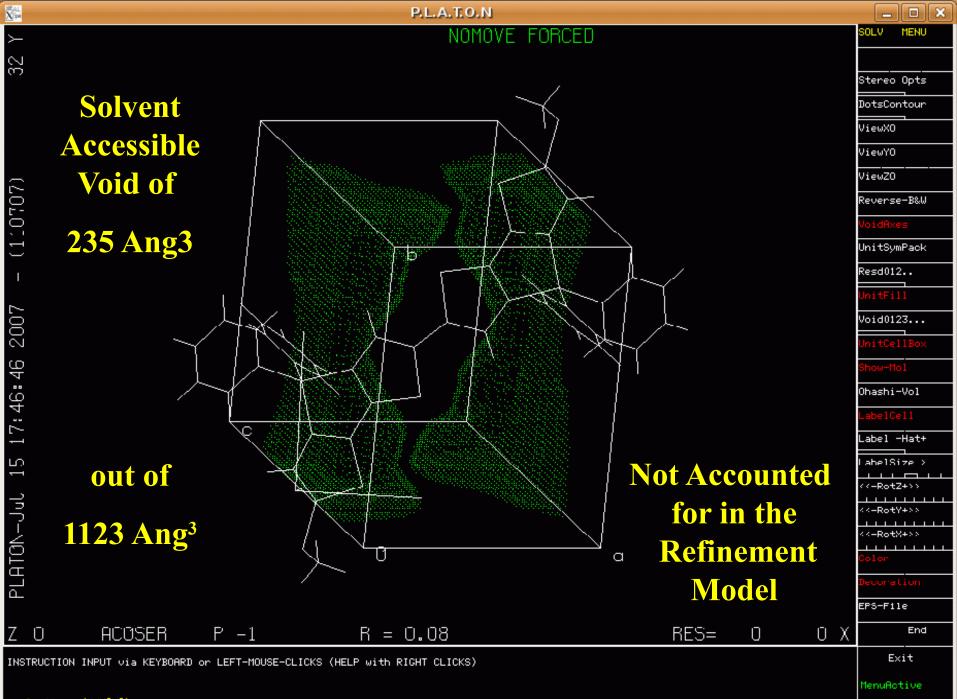
>>


	P.L.A.T.O.N	_ _ X
	PLATON/ADDSYM for VENPOU P 1	ADDSYM MENU
	ADDSYM Search on ALL NON-H Chemical Types [Max NonFit 20 Perc] Criteria: 1.00 Deg (Metric), 0.25 Ang (Rot.), 0.45 Ang (Inv), 0.45 Ang (Transl)	NonFitPerc
	Symm. Input Reduced (Ang) (Deg) () (Ang) Input Cell	TolMetric
	Symm. Input Reduced (Ang) (Deg) () (Ang) Input Cell Elem Cell Row Cell Row d Typ Dot Angle Flt MaxDev. x y z	
	2 * [1 0 0] [1 0 0] 8.08 2 1 0.06 100 0.024 Through 0 0.302 0.266 1 F36 -F28 Screw = 1/2 0 0	TolInvers
	2 × [0 0 1] [0 0 1] 36.08 2 1 0.13 100 0.016 Through 0.415 0.552 0	loliransi
	1	NFTPercImpl
	2 * [0 1 0] [0–1 0] 15.67 2 1 0.14 100 0.025 Through 0.665 0 0.516 1 F10 -F28 Screw = 0 1/2 0	
	Reduced-to-Convent Input-to-Reduced T = Input-to-Convent: a' = T a	
		— NoSubCell
	$(0 0 1) \times (0 1 0) = (0 0 1) =$	KeepMon-I-n
	Cell Lattice a b c Alpha Beta Gamma Volume CrystalSystem Laue	
	Input aP 8.079 15.672 36.082 90.13 90.01 90.06 4569 Triclinic -1	
	Reduced P 8.079 15.672 36.082 90.13 90.02 90.05 4569	
	Convent of 8.079 36.082 15.672 89.87 89.94 90.01 4569 Orthorhomble mmm	
	Origin shifted to: 0.415,-0.484,-0.302 after transformation Missed/Additional Symmetry : Suggested SPGR = P212121 (No 19)	
	hessed/hade conde symmetry - suggested si an - 1212121 (No 13)	
		ListDetails
		ADDSYMEqual
		ADDSYME1mnt
		ADDSYME×act
		ADDSYM-PLOT
		ADDSYM-SHX
		End
INS	STRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)	Exit
	Additional (Recude)Supratou Found (See Listing For dataile)	MenuActive


The TwinRotMat Tool

- Inspired by but not identical with the ROTAX tool (Parsons et al. (2002) J. Appl. Cryst., 35, 168)
- Reflections effected by twinning show-up in the least-squares refinement with F(obs) >> F(calc)
- Overlapping reflections necessarily have the same Theta value within a certain tolerance.
- Generate a list of implied possible twin axes based on the above observations.
- Test each proposed twin law for its effect on R.
- Part of CheckCIF

Possible Twin Axis



		— (TwRoMt MENU					
			nRotľ			NRefSelMin					
						DeltaI/SigI					
Analust	Analysis of Fo/Fc Data for Unaccounted (Non)Merchedral Twinning for: twin										
			344 90.00 90.00 1	10	50	FullListing					
			0, DeltaTheta 0.10			EPS-TwinLaw					
N(refl)	= 4445,	Niselected) =	50, IndMax = 25,	Lritl = U.3, Crit	$J = U_{.} 10$	DspTwinMat1					
ြ 2-ax	ls () 0	1)[00	1], Angle () [] =	0.00 Deg: Freq =	47	DspTwinMat2					
(<u>50808</u>)	000 0.000	0.000) (h1)	(h2)	Nr Overlap = 44	45	DspTwinMat3					
8 (0.		0.000) * (k1)	= (k2)	BASF = 0.		DspTwinMat4					
· (0.	000 0.000	1.000) (U1)	= (L2)	DEL-R =-0.1	07	EPS-TwinLat					
2-ax	ls (1 -1	0)[1-1	0], Angle () [] =	0.00 Deg, Freg =	48	Resolution>					
5002 (0.											
						Zone-H,K,L					
12	000.00	-1.000) (L1)	= (L2)	DEL-R =-0.0		Up Down					
21:12 2-ax					36	RacemicTwin					
Z: (1.											
··· (1.						SelectTMat1					
ω (Ο.						SelectTMat2					
						SelectTMat3					
6n U-0.					10	SelectTMat4					
l (− 0 .					76	HKLF5-CritI					
NO (O.						HKLF5-CritT					
						HKLF5-Gener					
			R = 0.20			End					
	twin		$\Pi = 0.20$								
INSTRUCTION IN	NPUT via KEYBOAN	RD or LEFT-MOUSE-CLIC	CKS (HELP with RIGHT CLICK	S)		Exit					
						MenuActive					

The SOLV, VOID & SQUEEZE Tool

- Detection and display of solvent accessible voids in a structure
- Determination of the Kitaigorodskii packing index
- Handling disordered solvent contribution in the structure refinement (SQUEEZE)
- Determination of the available space in solid state reactions (Ohashi)
- Determination of pore volumes, pore shapes and migration paths in microporous crystals
- VOID detection is part of CheckCIF

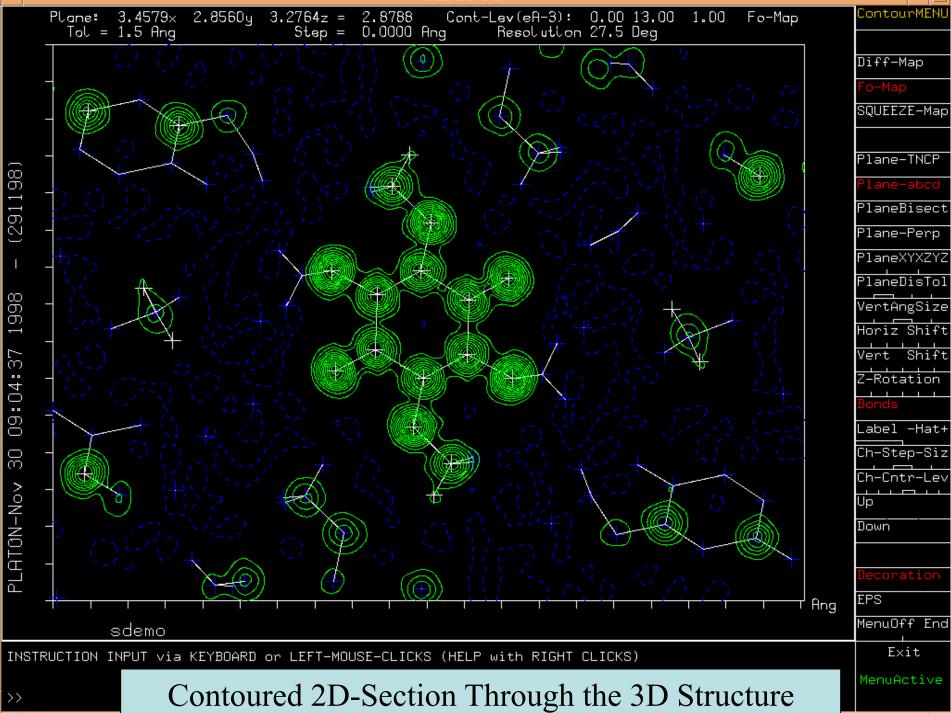
 \rightarrow Continue (Y/N[Y])

b a С đ Space Available for **Diethyl Ether**

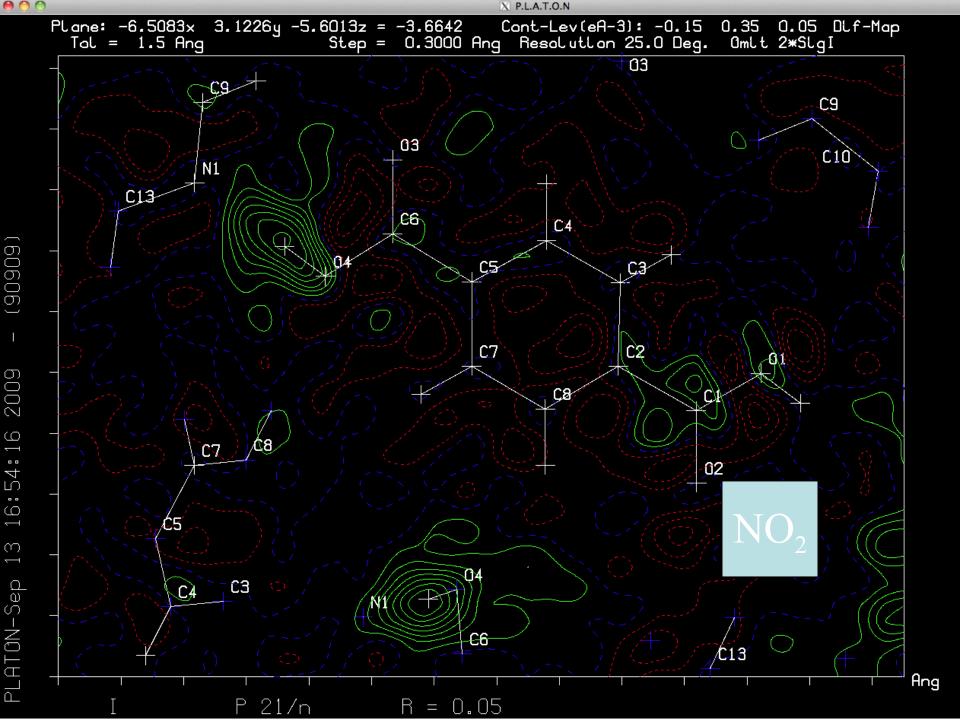
INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)

>> Continue (Y/N[Y])

P.L	.A.T.C	D.N													
	Sea	rch for	and A	Inal	ysls c	of Solv	vent A	ccessl	ble V	old	s ln	the S	Struct	ure	SOLV MENU
3	Area	#GrldPa	olnt Vo	LPer	c. Vol	L (A 3)	X(av)	Y(av)	Z(av)	ELa	envect	.or(fr	ac) SLa	(Ang)	
	1	20126[4	156 C				0.750	1			0.520	1-74	Stereo Opts
	~	001045	40201		1505	21 01	0 500	0.010	0.050	ş -	0.001-		-0.002	1.35	DotsContour
	2	20134[4072]	4	156 [31.6]	0.500	0.316	0.250	Ź-(0-503	Q.002	1:000	1.55	ViewXO
	З	201250	4072]	4	156 C	31.6]	0.500	0.684	0.750	3-0	1.003-		-U.UU1 Q.522	1:22	ViewYO
			10000			o				3 -{	0.003-	-0.005		1.35	ViewZO
	4	201310	4072]	4	156[31.6]	0.000	0.816	0.250	$\frac{1}{2}$ -(1.000- 0.505-	0.003	1.000	1.55	VoidAxes
										3 -(0.001-	-1.000	-0.002	1.35	UnitSymPack
															Resd012
															UnitFill
															Void0123
															UnitCellBox
															Show-Mol
			List	inc	n of	all v	oids	s in 1	the i	un	it c	ell			Ohashi-Vol
					,										LabelCell
															Label -Hat+
															LabelSize >
						_		_					_		<<-RotZ+>>
		E E	ΧΑΝ	ЛP	N F	OF	΄Α \		DA	N	ΑΙ	YS	IS		<<-RotY+>>
															<<-RotX+>>
															Color
															Decoration
															EPS-File
															End

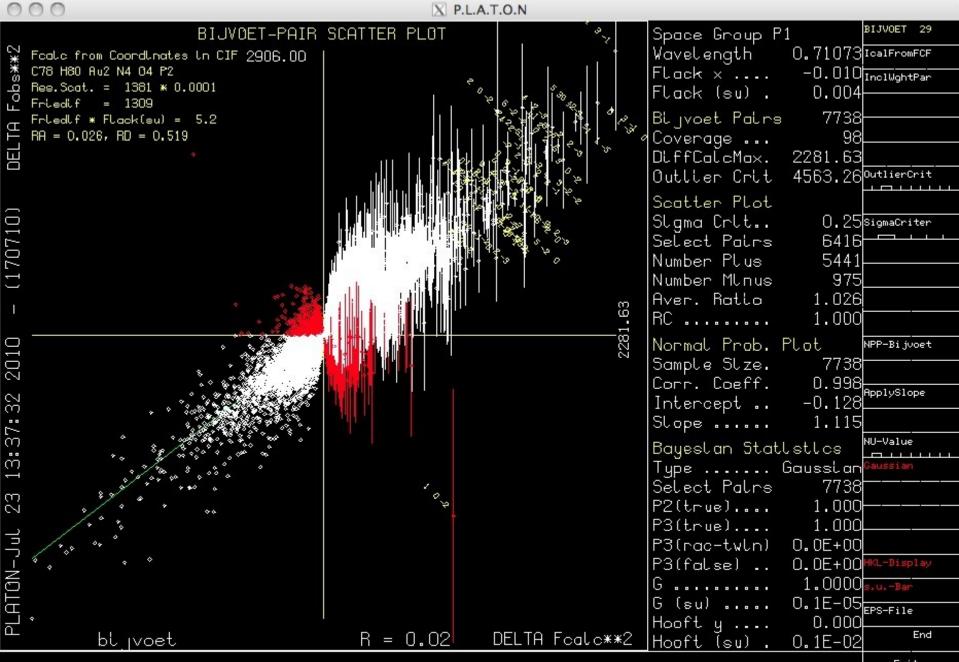

INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)

Solvent Accessible Void Found (See Listing for Details)


Exit

The Fourier Contour Tool

- Contoured display of sections through electron density and difference electron density maps.
- Difference maps can be calculated with some atoms left out of the structure factor calculation testing purposes
- Missing atoms show up green and misplaced atoms show up with red contours.



>>

The Bijvoet Pair Tool

- Scatter Plot of observed and calculated Friedel/Bijvoet pair differences
- Comparison of Flack and Hooft parameters for absolute structure analysis
- Application to low anomalously scattering compounds
- Part of IUCr CheckCIF

INSTRUCTION INPUT via KEYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)

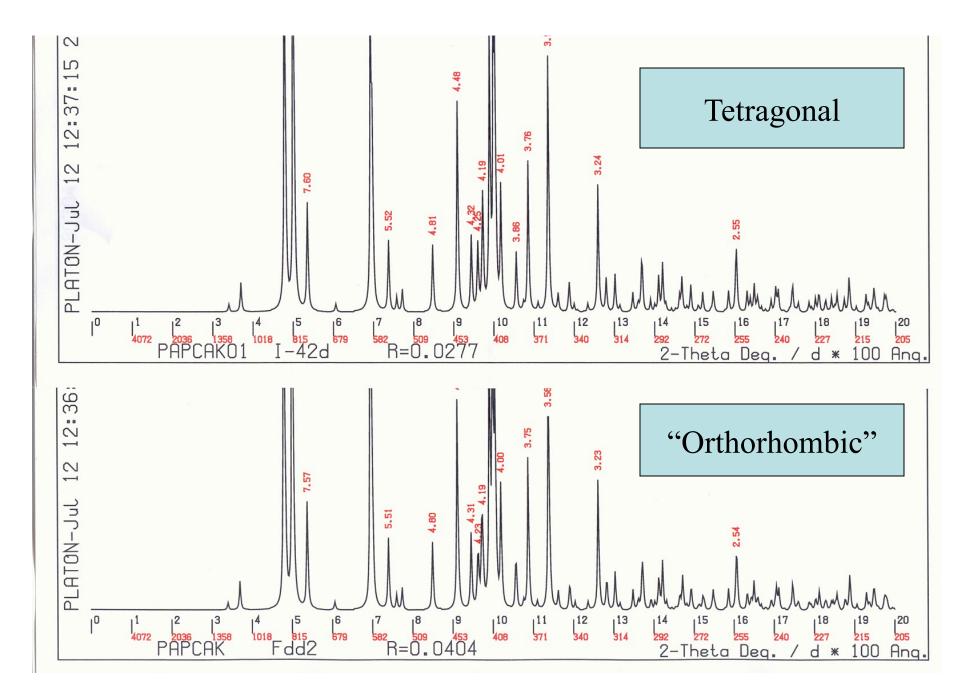
Exit

The Structure Validation Tool

- Part of the IUCr CheckCif Suite
- CIF-Validation
- FCF-Validation
- Shortcut: platon –U name.cif
- Output on name.chk and name.ckf
- ALERTS are documented in *check.def* and www.cryst.chem.uu.nl/platon/CIF-VALIDATION.pdf
- www.cryst.chem.uu.nl/platon/FCF-VALIDATION.pdf

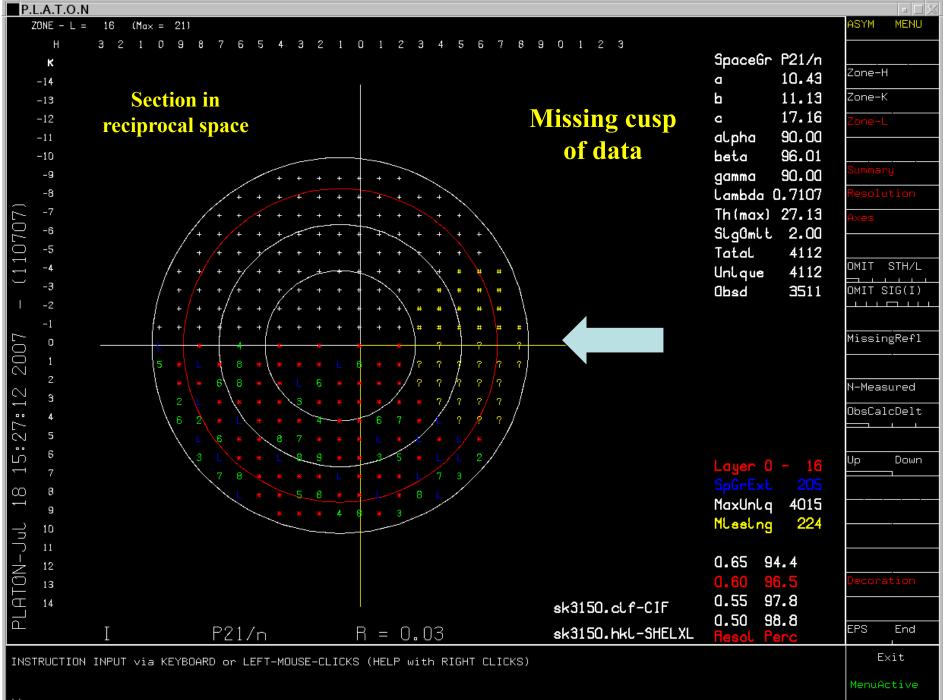
The SYSTEM S Tool

- Guided or Automatic structure determination (UNIX/LINUX only)
- Originally (1990) developed around a serial detector system (1 data set a day)
- Used for early structure determination with incomplete data sets for evaluation
- Interfaces to SHELX, SIR, DIRDIF etc. for structure solution


The FLIPPER Tool

Ab-initio structure determination based on a local implementation of the Charge Flipping technique (Oszlanyi & Suto) in space group P1 There are three main options:

- 1. 25 random phase starting point attempts
- 2. A single solution attempt starting from all phases set to zero (the PATT option)
- 3. Same as 2 with subsequent L.S. refinement


Simulated Powder Patterns

- Powder patterns can be simulated both from observed reflection data or from calculated reflection data
- Easy tool to compare two data sets for the same structure in different settings etc.
- Example: Two published 'polymorphs' taken from the CSD

The ASYM VIEW Tool

- Display of the data resolution, data completeness, data multiplicity, intensity, etc. as artificial reciprocal lattice plane views
- The view may point to the presence of additional (pseudo) extinctions
- The view may visualize systematically missing parts of the reflection sphere

Correction for Absorption

- HKL file should include SHELX style direction cosines
- Multi-scan (Blessing)
- Analytical (de Meulenaer & Tompa)
- Gaussian integration (Coppens)
- Spherical correction

File Creation Tools

- Conversion of SHELXL .ins and .hkl files from .cif and .fcf files. This can be useful to do further calculations with data from Acta Cryst. publications
- Conversion to CIF, RES, SPF, PDB style files
- Creation of a P1 coordinate set for the input data set
- Creation of a *.hkl* from coordinate data

Other Tools

- ASYM Averaging of Reflection Data
- SPGRfromEx Space group determination
- NEWSYM Space group determination from calculated (model derived) data
- LePage Determination of the metrical symmetry of a lattice
- Auto-renumbering of the labels in a .res file
- Bond Valence Calculation
- Structure Tidy Standardization of Inorganic structures.
- Comparison of two FCF files (Scatter Plot)

FINALLY ...

A current PLATON Manual can be found on www.cryst.chem.uu.nl/PLATON-MANUAL.pdf

(Note: do not print the PLATON MANUAL. The current document still needs more details to be added to the already 240 pages)

Thanks to the users for taking time for valuable suggestions and bug reports